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ABSTRACT

In this report, we investigate a method of selecting datasets for validating National
Airspace System (NAS) simulations. First, a decomposition of the NAS is
performed in order to identify the states, control actions, and performance measures,
which best characterize the NAS.  Data sets available for a historical statistical
analysis of the NAS are reviewed.  Then, a statistical analysis is performed for NAS
states, control actions, and performance measures to generalize the statistics of the
data over a period of 2000 to date (October, 2002).  Feature vectors that describe the
NAS are defined for the purpose of identifying several “types” of days in the
NAS.  A cluster analysis approach is invoked to identify the optimal feature vector
for representing historical NAS data.  Next, we demonstrate how to select the most
“typical” day within each “type” of day in the NAS.  Finally, we provide
recommendations on how to use the “typical” days to validate simulations of the
NAS.
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1 Introduction
Within NASA’s Virtual Airspace Modeling and Simulation (VAMS) Project, there is a need to
validate simulations of the National Airspace System (NAS).  In the validation process, NAS
simulation output data is compared – in some statistical sense – to the real world data characterizing
the natural operation of the NAS.  Within VAMS as well as other NAS simulation efforts, one must
have NAS datasets available to validate low, medium, and high fidelity NAS simulations.  This
project specifies datasets for this purpose.

The NAS is very complex.  It has a vast amount of states, controls, and performance metrics
associated with it.  Because of this, validation data sets have the potential to become quite large.
Hence, an objective of this report is to minimize the amount of information that is required to
validate a NAS simulation.  To this end, we define an optimal NAS feature vector that is composed
of a minimal amount of variables that describe the NAS.  When used in the validation of a NAS
simulation, the optimal NAS feature vector provides the minimum amount of validation data.

A useful point of departure for discussing NAS data is to consider the number of domestic
enplanements as shown in Figure 1.  Clearly, the NAS shows long term periods of growth which
has been greatly disrupted by the Sept. 11, 2001 tragedy.  This event complicates our analysis since
the time period from Sept. 2001 to the present strays from the natural progression of the NAS.  The
recovery rate from Sept. 2001 to date exceeds the historical growth rate over the last decade.
Because of this, we restrict our main focus to a period from Jan. 2000 to Sept. 2001.  However, the
most current data available is also analyzed for the sake of comparison.

Figure 1. Historical timeline for Domestic enplanements.

Given the time period between Jan. 2000 and Sept. 2001, we perform a scientific evaluation of NAS
data to determine standard “types” of days in the NAS and a “typical” day of each type.  The
purpose of defining the types of days in the NAS is to facilitate NAS simulation validations.  By
knowing the fundamental types of days in the NAS, one might validate a NAS simulation by
focusing on each different type first.  By spanning the set of fundamental types of days in the NAS
during the validation effort, simulation builders can feel confident that a sufficient number of test
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days are chosen that represent the fundamental modes of operation of the NAS.  By contrast,
randomly choosing days or choosing days with some other criteria could fail to adequately test a
NAS simulation.  In this report, we identify the most typical day for each type of day in the NAS.
In doing so, NAS validations can focus on validating the set of most-typical days in the NAS.

1.1 Objectives
The objectives of this analysis are:

• Define and quantify statistical properties of the NAS over a one-to-two year timeframe
• Identify standard types of days in the NAS, and the most typical day of each type
• Deliver a dataset useful for low, medium, and high fidelity NAS simulation validations

1.2 Technical Approach
The technical approach to this project is outlined below.

1.2.1 NAS Data Requirements
NAS simulation data requirements are determined for state variables, controls, and performance
metrics.  State variables include such things as track data, weather, demand, etc.  Controls include
Miles-In-Trail (MIT) restrictions, Ground Stops (GSs), Ground Delay Programs (GDPs), holding,
cancellations, and the like.  Performance metrics include all types of delays.  The complete list is
presented in Chapter 2.

1.2.2 Recommendation of Some Basic NAS Feature Vectors
We define a NAS feature vector, a vector that characterizes the NAS state variables, controls, and
performance metrics. Each component of the vector represents one NAS statistic for a day. After
considering several candidate NAS feature vectors, we proceed in our research to identify the
optimal NAS feature vector – the vector with minimum size.  The optimal NAS feature vector is
later used to identify the varying degrees of "typical-ness” of NAS behavior.

1.2.3 Statistical Analysis of the NAS
We investigate the statistical properties of the NAS state variables, control variables, and
performance metrics over time periods spanning as much as one-to-two years of data.  These
variables are generalized into daily statistics and grouped into sets of data spanning each year to
support a subsequent cluster analysis. Where appropriate, we identify anomalies, outliers, minima,
maxima, averages, standard deviations, as well as daily, weekly, monthly, or seasonal trends. Where
appropriate, we identify transformations for data abstraction, cleansing, filtering, and averaging.
Histogram statistics, comparison plots, and geographic plots are used to visually display the
statistics for the NAS.

1.2.4 Establish an Optimal NAS Feature Vector
Based on the characterization of many potential NAS feature vectors, we analyze the statistical
properties of the NAS data in order to reduce the size of the NAS feature vector to a minimum NAS
feature vector size.  This “optimal” NAS feature vector retains the most salient features of the
historical data of the NAS.  This optimal NAS feature vector is then used to identify the different
types of days of the NAS.

1.2.5 Establish N Types of Days in the NAS and the most Typical Day for each Type
Utilizing the optimal NAS feature vector, we partition NAS daily statistics from Jan. 2000 to Sept.
2001 into N categories, each corresponding to a set of days with similar statistical behavior. The
simple statistical center of each category may not actually fall near any particular day in the NAS, so
we identify a distance metric that allows us to identify the closest day to the center. From any one of
the N categories, one (or more) days can be selected as the “typical” representative of that type of
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day, based on the proximity to the statistical center.  Finally, we describe how the most typical days
for each type of day can be used in NAS simulation validations.

1.2.6 Prepare Datasets
From each of the categories of NAS behavior, representative datasets are constructed and delivered
to NASA. In addition, we identify a method of storing and retrieving data from the datasets in a way
that is useful to a wide variety of low, medium, and high fidelity NAS simulations. Key filters for
data cleansing, smoothing, and removal of erroneous data are described to support the data
retrieving process.

1.3 Report Organization
As illustrated in Figure 2, this technical report is organized as follows:

• Chapter 1 introduces the problem statement and approach to the problem
• Chapter 2 identifies general data requirements for NAS simulations
• Chapter 3 specifies the sources of data used in the study
• Chapter 4 performs a statistical analysis for the state, controls, and performance variables
• Chapter 5 invokes a cluster analysis approach to identify dependencies between variables

and reduce the variable set to an optimal NAS feature vector size; furthermore, Chapter 5
identifies in a second cluster analysis the N-types of days in the NAS, and

• Chapter 6 investigates “special” types of days in the NAS.
• Chapter 7 states our conclusions and recommendations from this study.

Appendices contain additional information supporting this study:
• Appendix A specifies the notation used in graphs
• Appendix B specifies fleet mix data
• Appendix C illustrates the relationship between cancellations and weather
• Appendix D outlines the variable bundling process
• Appendix E outlines the type-of-day cluster analysis process
• Appendix F specifies airport abbreviations
• Appendix G specifies hub airports
• Appendix H presents the final rankings for the different types of days in the NAS
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Figure 2.  The organization of this report.
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2 NAS Simulation Data Requirements
In this chapter, we describe data requirements for NAS simulations.  NAS state variables, controls,
and performance metrics are identified.  We first start with a general decomposition of the NAS to
enumerate variables.  Then, in particular, VAMS data requirements are considered.

2.1 NAS Decomposition
In this section, we identify classifications of states and control actions that describe the NAS.  We
have identified six initial categories for the decomposition as presented in Figure 3.  These
categories are described next.

Figure 3.  Categories of Decomposition of the NAS.

Note:  In our decomposition, we focus on an enumeration of candidate variables.  This does not
imply that all these variables are necessary to investigate a macroscopic model of the NAS.

2.1.1 Aircraft States
NAS state variables that describe aircraft include, but are not limited to:

• Aircraft type
• Arrival/Departure and Alternate Airports
• Aircraft Class – (Small, Large, B757, Heavy)
• Call Sign
• Airline Operator
• Flight Plan
• Flight Plan Amendment
• Aircraft Track
• Flight Rule Category (Instrument Flight Rules (IFR) or Visual Flight Rules (VFR))

2.1.2 Airport/Surface State
Airport/surface states that influence the NAS include, but are not limited to:

• Airport Arrival Rate (AAR)
• Airport Departure Rate (ADR)
• Runway Configuration
• Airport Location (Latitude, Longitude, Mean Sea Level (MSL))
• Surface Traffic Facilities
• De-icing
• Runway Visibility Range (RVR)
• ILS Category (I, II, IIIa, IIIb, IIIc)
• Airport Category
• Terminal Forecast (LIFR, IFR, MVFR, VFR) – Low IFR, IFR, Marginal VFR, VFR
• Gate Availability

2.1.3 Airspace Infrastructure
FAA airspace infrastructure includes:

• Regions
• Centers – 20 Centers in the NAS
• Sectors – Each Center has from 20 to 80 Sectors

Aircraft Airport Airspace
FAA

Control
s

User
Control

Atmo-
sphere

Figure 4 illustrates the Centers
and Sectors in the NAS.
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• Airways
• Fixes
• Navaids
• Standard Instrument Departures (SIDs)
• Standard Terminal Arrival Route (STARs)
• Controlled Airspace Classes (Class A, B, C, D, E, and G)

Ø Class A – Positive Control Area
Ø Class B – Terminal Control Areas
Ø Class C – Airport Radar Service Areas
Ø Class D – Control Zone/Airport Traffic Areas
Ø Class E – Control Zone/Non-Towered airports
Ø Class G – Uncontrolled Airspace

• Special Use Airspace (SUA)
• Flow Constrained Areas (FCAs)

In any airspace other than Class G, aircraft may be subject to Air Traffic Control (ATC).
Furthermore, in Class A airspace, flights are normally operated under IFR.  

Figure 4.  The centers (labeled with 3-letter identifiers) and high altitude sectors of the NAS.

2.1.4 FAA Controls
FAA control facilities include:

• Air Traffic Control System Command Center (ATCSCC)
• Air Route Traffic Control Center (ARTCCs) - (Traffic Management Unit (TMU), Local

Controllers)
• Terminal Radar Approach Control (TRACONs)
• Air Traffic Control Towers (ATCTs)

FAA procedures include:
• Standard Operating Procedures (SOPs)
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• Letters of Agreement (LOAs)
• Missed Approach Procedures
• En route Spacing Program (ESP)- (Center, Destination Airport)
• Special Traffic Management Programs (STMPs)

FAA control actions include:
• Ground Delay Programs (GDPs) (including Expect Departure Clearance Times (EDCTs))
• Ground Stops (GSs) – (Start time, Stop time)
• Miles-In-Trail (MIT) restrictions – (Start time, Stop time, Miles)
• Approval Requests (APREQs) – EDCT
• Direct To Route – (Direct to Fix location) for ESP
• Vector (Speed, Altitude, Heading) for ESP
• Vector (Speed, Altitude, Heading) for Conflict Detection and Resolution (CD&R)
• Vector (Speed, Altitude, Heading) for LOA compliance
• Airborne Circular Holding (Holding Pattern Fix Location)
• Airborne Path-Stretch for Holding
• Playbook Plays (Re-routes; Coded Departure Routes (CDRs))
• Low Altitude Arrival and Departure Routes (LAADRs)
• Special Use Airspace (SUA) activation and de-activation

2.1.5 User Controls/Preferences
User controls (Pilot and/or Airline Operational Control (AOC)) include:

• Flight Cancellations
• Altitude Changes for Turbulence Avoidance
• Direct To Route – (Direct to Fix location) for User Route Preference
• Vector (Speed, Altitude, Heading) for Separation Assurance
• Vector (Speed, Altitude, Heading) for Weather Avoidance
• Vector (Speed, Altitude, Heading) for Terrain Avoidance

User preferences include:
• AOC policies (crew resource management)
• AOC flight schedules
• Ramp Tower Taxi Preferences
• Military AOC Preferences

2.1.6 Atmospheric State
There are several atmospheric states that influence the NAS; they include, but are not limited to:

• Winds aloft
• Precipitation
• Convective Activity (hail, microbursts, tornados, wind-shear, turbulence, icing, lightning, and

reduced visibility)
• Cloud Tops
• Ceiling
• Visibility
• Temperature
• Pressure
• Humidity
• Turbulence (Light, Moderate, Severe, Extreme)
• Icing (Rime, Clear)
• Volcanic Ash*

                                                
* Note: While not actually a weather phenomenon, volcanic ash is weather-related because it is transported within the
atmosphere (i.e., by winds aloft).
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2.1.7 Notes on States and Controls
Note that this section has identified a wide variety of states and controls that describe the NAS.  In
addition to these states and controls, there are also performance metrics that describe the NAS.
These performance metrics are described next in Section 2.2.  Additionally, note that the amount
of states surveyed in this section of the report far exceeds the amount of data that is currently
available in historical databases for describing the NAS (Chapter 3 reviews databases that describe
useful datasets for this study).  Furthermore, each set of historical data spans a different start-to-
finish time period.  Some of these data are available up to the current time, while other datasets have
a time delay between when the data are collected and when they are made available for analysis
purposes.  Given these data availability complications and noting the effect of the September 2001
tragedy, the most complete set of data was for a time period of January 2000 to September 2001.

2.2 NAS Data Requirements based on VAST Simulations
Virtual Airspace Simulation Technology (VAST) simulations determine data requirements [Ra02a,
Ra02b] to validate the NAS simulation results with actual NAS data and statistics.  A simulation
may include a mixture of low, medium, and/or high fidelity models for a number of components:

1.  Traffic Control 6. Surveillance
2.  Aircraft 7. Meteorological Condition
3.  Airline 8. Traffic Demand
4.  Communications 9. Airspace
5. Navigation

Since a mixture of different fidelity models can potentially be included in a simulation, the focus on
validation of a simulation is placed on the properties of the simulation states and performance
metric outputs.  The emphasis of validation is placed on the following performance metrics:

• Flight Event Times
• Delays
• Fuel
• Controller Workload

These performance metrics and how they are validated are discussed next.

2.2.1 Flight Event Times
The times of certain simulated flight events are recorded and used in the validation process.  The
flight events include:

• Gate Departure Time
• Taxi Out Time
• Take Off Time
• Airborne Time
• Landing Time
• Taxi In Time
• Gate Arrival Time
• Block Time

There are three distinct values of these times:

1. The Actual Times – The times when the events actually occurred.
2. The Measured Times – These represent measurements made of actual events.
3. Simulated Times – The times of occurrences of certain events within a simulation.

In general, data from real-world measurements establishes the measured times, and the NAS
simulation determines the simulated times.  The actual times are only used for discussion.  In this
report, these events are not recorded or analyzed explicitly.  Instead, we investigate the relative
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information determined by delays associated with these events, and we study them in aggregate
statistics only.  The next section of this report explains this further in terms of delays.

2.2.2 Delays
Delay metrics important to VAST simulations include:

• Gate Departure Delay – This represents the effect of ground holds, ground stops, or other
delays incurred at the gate.

• Taxi Out Delay – This represents queuing delays that might occur due to restrictions in the
airport departure capabilities.

• Take Off Delay – This is the Gate Departure Delay plus the Taxi Out Delay.
• Airborne Delay – The airborne delay is the difference between the “scheduled” airborne

time and the measured airborne time.  The “scheduled” airborne time is taken to be the
Estimated Time En Route (ETE) that is filed by the airline that is contained in the Enhanced
Traffic Management System (ETMS) FZ message.  

• Landing Delay – This is the take off delay plus the simulated airborne delay.
• Taxi In Delay – This represents queuing delays that might occur due to restrictions in the

airport arrival capabilities.
• Gate Arrival Delay – This is the difference between the scheduled arrival time and the actual

arrival time.
• Block Time Delay – Block time is the time between gate arrival and gate departure.  Block

time delay is the gate arrival delay minus the gate departure delay.

There are three distinct values of delays:

1. Actual Delays – these are the delays that actually occurred.
2. Measured or Estimated Delays – Delays are not directly available from ETMS but can be

approximated from ETMS and OAG schedule data.  Delays by individual flight cannot be
obtained from ASPM.  The ASPM system uses these times internally to estimate some of
the delay quantities it measures, but such times are not currently available for the validation
efforts.

3. Simulated Delays – These are the delays as computed within the simulation.

In this report, all of these delays are included in the statistical analysis with the exception of landing
delays.

2.2.3 Fuel
In VAST NAS simulations, the fuel consumed by individual aircraft is calculated.  However, the
fuel-consumed metric is not validated against real-world data since the actual fuel-consumed data
are not available for analysis.  While BTS provides aggregate fuel cost and consumption data on a
yearly basis, they do not provide it on a daily basis.  In this report, we also do not include fuel
consumed in the analysis due to the lack of data.

2.2.4 Controller Workload
Workload is derived from the number and types of controller actions, which include:

• Count of air/ground communications
• Vectors issued by the controller
• Reroutes by the controller

In this report, we do not investigate any of these specific controller workload variables because there
is a lack of data to describe these variables.  Instead, we suggest that controller workload is reflected
in the terminal holding, GS, and MIT statistics investigated in this report.
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2.3 The Use of NAS Feature Vectors
Based on the NAS decomposition, the NAS simulation requirements, as well as the availability of
NAS data, next we describe feature vectors that can be used to describe the behavior of the NAS.  A
feature vector attempts to describe the state of the NAS in terms of a minimal set of state, control,
and performance variables.  One feature vector is established for each day in the NAS. The
components of the feature vector are aggregate statistics collected for that day, as illustrated in
Figure 5.  For instance, the first component would describe weather status, the second would
describe hub traffic volume, and so on.

Wx
State

NAS HUB
Traffic

Volume

NAS
Traffic

Mix

MITs GSs and
GDPs

Cancell-
ations

Holds Delays

Figure 5.  Example feature vector for the NAS.

These feature vector elements support characterizing statements about the NAS that can be either
general or specific.  Specific statements might take the form such as “on a typical day in the NAS,
x number of the ASPM-50 airports are operating at reduced capacity, y number of MIT restrictions
have been in place and there are z flight cancellations.”

In order to support general statements about the NAS, we identify a small finite number of
linguistic descriptors based on the statistical properties of these states, control variables, and
performance metrics.  These descriptors are:

• High, Medium, and Low are determined using the standard deviation ( ) and mean ( ) of
a Gaussian (or Poisson) distribution for a state, control, or performance metric.  Thus, High
is above one standard deviation, Medium is within one standard deviation, and Low is below
one standard deviation from the mean.

• Normal vs. Extreme is also determined using the standard deviation and mean.  Normal is
used to describe when the state is within two standard deviations from the mean, and
Extreme is used when a variable is outside two standard deviations from the mean.

• Rare is determined by the maximum, minimum, standard deviation, and mean.  A data point
that defines the maximum or minimum is labeled as rare unless the maximum or minimum
is within two standard deviations (2 ) from the mean.

Because we have collected a wide variety of NAS statistics, the potential number of components to
make up the feature vector is quite large. Moreover, variables that might make up the components
are often heavily correlated. In Chapter 5, we reduce the number of variables to a less redundant,
more manageable optimal collection, which can be more easily interpreted.  Cluster analysis
(defined later) is used to gather the variables by similar statistical behavior. The result is M clusters.
From each of the clusters, a representative variable is selected, and the others are discarded. This
variable is the one with the strongest "presence" in the cluster.

Once the M dimensions of the optimal NAS feature vector are identified, one optimal feature vector
is created for each day's worth of data. The entries are filled with the appropriate statistics. A second
cluster analysis is performed to group the daily vectors by similar behavior.  Each cluster then
represents a category of NAS behavior, ranging from least typical to most typical in the category.
Each day's feature vector then belongs to only one of the clusters. Details of the cluster analysis are
provided in Chapter 5.

One of the primary objectives of this project is to deliver datasets representing typical days in the
NAS. The vectors within the most "typical" cluster are ranked from 1 to k, where k is the number of
vectors in the cluster. The rank of one is given to the vector closest to the statistical center of the
cluster, while k is given to the vector the farthest away. (Ties are broken arbitrarily.) If three typical
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days worth of NAS data were collected, they would correspond to the three vectors with the highest
ranking. Similarly, representative days can be selected from any of the other clusters of vectors.
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3 Data Sources
In this section, we briefly describe the data sources used in the analysis and the time periods that are
applicable for each dataset.  These data sources are organized in alphabetical order.

3.1 ACARS OOOI Data
The Bureau of Transportation Statistics (BTS) provides Aircraft Communications Addressing and
Reporting System (ACARS) data for Out, Off, On, In (OOOI) times:

• "Out" is the time when the aircraft leaves the gate. A message is automatically sent when the
parking brake is released.

• "Off" is the time when the aircraft becomes airborne. Sensors on the aircraft landing gear
detect when the aircraft leaves the ground, triggering an "Off" message.

• "On" is the time when the aircraft touches the runway on a landing. Sensors on the landing
gear detect when the aircraft is on the ground triggering an "On" message.

• "In" is the time when the aircraft parks at the gate, doors are opened, and the parking brake
is set.

ACARS OOOI data were not explicitly collected for the study.  ACARS data are implicitly used in
this study since BTS and ASPM data incorporate these data.

These data are published monthly on the website www.bts.gov and is generally available 40 days
after the end of the reporting month. OOOI data are provided only for carriers that participate in the
program1:

• American Airlines
• Air Canada
• Continental Airlines
• Delta Airlines
• Fedex
• Northwest Airlines
• United Airlines
• UPS
• US Air
• Alaska Airlines
• American Eagle
• America West
• Southwest Airlines

3.2 ASPM Data
The FAA provides Aviation System Performance Metrics (ASPM) data for flight metrics at 50
major airports (see Figure 6), referred to as the ASPM-50 airports.  ASPM data were collected
from January 2000, to date.  ASPM provides data as described in Table 1.  ASPM metrics for
each individual flight can be correlated to other flight characteristics including:

• Season - data are reported on a monthly basis and in four seasonal blocks: winter, spring,
summer, and fall.

• Carrier - data for all air carriers.
• Time - data by day of month and flights identified by time of departure and arrival.
• Weather - fields for weather conditions including ceiling, visibility, temperature, wind angle,

and wind speed at both departure and arrival airports.
• Runway Configuration – data includes the particular combination of runways that is in

use at an airport.

                                                
1 Note: There are no General Aviation (GA) flights included in OOOI data.
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ASPM integrates data from two primary sources: ETMS and OOOI data. The Official Airline
Guide (OAG) planned times form the basis for comparing actual to scheduled departure times.
Note that the OAG does not record information on non-scheduled flights, cargo flights, GA flights,
or military operations. Also, Airline Service Quality Performance (ASQP) data are integrated into
ASPM on a monthly basis.  Cancellations are obtained from ETMS RZ messages, and then
updated with ASQP data.  Weather data are obtained from the National Oceanic and Atmospheric
Administration (NOAA).  Note that ASPM-reported metrics are estimates and not actual measures.

Table 1.  ASPM Record fields and descriptions.

Field Description
1 Airport ID

2,3,4 Year, Month, Day; Hour (0 to 23); Quarter Hour (1 to 4)

5,6 Scheduled Departures; Arrivals

7,8 ASPM Departures; Arrivals

9,10 Cancelled Departures; Arrivals

11,12 Count of OAG-Based Gate Delays; Percent OAG-Based on Time Gate Departs

13,14 Count of OAG-Based Airport Departure Delays; Percent OAG-Based On Time
Departures

15,16 Count of OAG-Based Arrival Delays; Percent OAG-Based On Time Arrivals

17,18 Total OAG-based Gate Delay; Average OAG-Based Gate Delay

19,20 Total Taxi Out Delay; Average Taxi Out Delay

21,22 Total OAG-Based Airport Departure Delay; Average OAG-Based Airport Departure
Delay

23,24 Total Airborne Delay; Average Airborne Delay

25,26 Total Taxi In Delay; Average Taxi In Delay

27,28,29 Count of Flights with Block Delay; Total Block Delay; Average Block Delay

30,31 Total OAG-Based Arrival Delay; Average OAG-Based Arrival Delay

32,33 Departure Count; Arrival Count (used for Score Card Calculation)

34,35,36 Meteorological Conditions Flag (I – Instrument); Ceiling; Visibility

37,38,39 Temperature; Wind Angle; Wind Speed

40 Airport supplied runway configuration

41,42 Number of Aircraft waiting to Depart; Number of Aircraft waiting to Arrive

43, 44 Airport supplied Departure Rate; Airport supplied Arrival Rate

45,46 Measure of Departures on Overall Score; Departure Utilization Score

47, 48 Measure of Arrivals on Overall Score; Arrival Utilization Score

49 Total Utilization Score
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Figure 6. The 50 airports2 used by ASPM for NAS statistics.

ASPM data posed a few problems during analysis.  The ceiling, Meteorological Condition (MC),
and visibility fields were not formatted for easy analysis.  The ceiling data contained null records
for approximately 2% of the data, and was therefore omitted.  MC data was nonnumeric but
numeric values were assigned for analyses purposes.  IFR data was assigned a value of zero (0) and
VFR was assigned a value of one (1).  Visibility data contained fractional numbers.  A Perl script
was written that searched the file for fractional numbers and converted them to decimal numbers.
Also, the fractional data was not written in the same format.  Visibility data also included
nonnumeric data.  Nonnumeric data constituted approximately 2% of the visibility data.  Definitions
of the nonnumeric data could not be located; therefore they were deleted.  Less than 1% of the data
were outliers and approximately 2% were null records.  These were also excluded from the
analysis.  Table 2 summarizes the data quality issues related to ASPM data.

Table 2.  ASPM Record fields and descriptions.

Type
% Ceiling Records

Deleted
% MC Records

Deleted
% Visibility

Records Deleted
Nonnumeric 0% 0% ~2%
Outliers 0% 0% <1%
Null records ~2% 0% ~2%

3.3 ATCSCC National Log Data
Data from ATCSCC logs were collected for the following periods:

• January 2000 to date for MIT restrictions
• April 2000 to date for GS data

                                                
2 Appendix F specifies the mapping between 3-letter identifiers and geographical location of airports.

SJU
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• September 1998 to date for GDP data
Staff position logs provide advisory information and comments on discussions/coordination with
the facilities.  Data are added to these files only when a facility contacts the ATCSCC to report the
restriction3.  There are different types of position logs. The Severe Weather Area Log provides a
summary of activity and lists the specific events by time. East and West area logs provide (1)
weather data; (2) staffing and outage information concerning centers; (3) GDP code, outage, arrival
and departure runways configurations, and arrival/departure rates; (4) detailed listing of events
including MITs, GSs, and GDPs; and (5) a short narrative summarizing the shift.

Sample MIT restrictions from ATCSCC Logs are as follows.  MIT restrictions are formatted (for
the most part) as:

time stamp (Zulu) || Center From/To ... # MIT, issuing constraint, time periods,
reason for MIT and/or additional constraints.

For example:  “1640 | | ZOB/ZID...20 MIT, O/MIZAR DTW, 1700-1745, COMPACTED
DEMAND. “ means that at 1640 ZOB told ZID “starting at 1700 lasting until 1745 give 20 MIT
for flights arriving DTW over MIZAR because of compacted demand.”  Inconsistencies may exist
since this is not an automated process (there is no standard template).  Example restrictions from
1/29/02 (miscellaneous messages have been filtered out) are shown in Figure 7.

1106 | | ZOB/ZNY...20 MIT, ORD, 1145-1230, TERM VOL. ZAU/ZOB 10/30 MIT.
1106 | | ZOB/ZBW...20 MIT, ORD, 1115-1230, TERM VOL. ZAU/ZOB 10/30 MIT.
1106 | | ZOB/ZBW...20 MIT, MDW, 1200-1300, TERM VOL.
1106 | | ZOB/ZNY...20 MIT, MDW, 1200-1300, TERM VOL.
1110 | | ZOB/ZBW...25 JETS MIT, CLE, 1230-1315, ZOB30.
1110 | | ZOB/ZDC...25 JETS MIT, CLE, 1230-1315, ZOB30.
1110 | | ZOB/ZNY...25 JETS MIT, CLE, 1230-1315, ZOB30.
1157 | | ZOB/ZBW...30 MIT, ORD, 1245-1345, TERM VOL. ZAU/ZOB 15 MIT V/PMM.
1157 | | ZOB/ZNY...30 MIT, ORD, 1245-1345, TERM VOL. ZAU/ZOB 15 MIT V/PMM.

Figure 7. Example MIT restrictions recorded in the ATCSCC National Logs.

A number of data quality issues exist with ATCSCC data.  MIT data contained many typographic
errors.  This is due in part to the fact that each MIT restriction is hand-typed at the time of
recording the MIT for the ATCSCC logs.  A large number of obviously mistaken entries were
either corrected or deleted.  GDP and GS data were collected from the GDPE database.  GS data
are recorded in two different locations, depending on whether they were or were not part of a GDP.
On many occasions, a single GS is recorded numerous times; this usually corresponds to updates
or revisions of the GS.  However, merely considering the first and last records at each airport per
day is not sufficient, as it is possible that multiple GSs did occur at an airport.  In this case, a closer
study is necessary in order to determine which records correspond to which specific GSs.

3.4 BTS Data
Bureau of Transportation Statistics (BTS) data were collected for the period from 1980 to the
present.  BTS data provides a wide variety of NAS data for domestic and international air travel,
from the major airlines:

Alaska Airlines Northwest Airlines
America West Airlines Southwest Airlines
American Airlines Trans World Airlines
Continental Airlines United Airlines

                                                
3 When restrictions are imposed internal to a center without affecting other neighboring centers, it is not required to
report such restrictions to the ATCSCC.
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Delta Airlines US Airways

These airlines generate over 90% of domestic operating revenues. Because each of these airlines
earns at least 1% of the total domestic scheduled passenger revenue, FAA regulations require them
to report on-time performance data to and from the 27 largest airports.  Additional data are reported
on a voluntary basis and airline data are uploaded from its Computerized Reservation System
(CRS).  In particular, this includes ACARS data.

There were no data quality issues encountered with the BTS data.

3.5 ETMS Data
ETMS data for all flights in the NAS were collected from January 2000 to the present date.  ETMS
records flight information for all IFR flights, including air carrier, cargo, air taxi/commuter, GA, and
military operations.  ETMS also has flight information for arrivals of international flights.  ETMS
receives the NAS state messages as shown in Table 3.  ETMS track data (TZ messages) are
currently received at one-minute intervals.  Track data are presented to the truncated minute of
latitude and longitude.  Thus, ETMS track data has limited accuracy.

Table 3.  ETMS data identifiers, descriptions, and purpose.

Identifier Description Purpose

FS Scheduled Flight Plan Scheduled flight plan ahead of the filed flight plan

RS Scheduled Flight
Cancellation

Cancels a scheduled flight previously fed into ETMS

FZ Flight Plan Flight Plan as filed with the NAS

AF Flight Plan Amendment Amendment to flight plan as filed with the NAS

RZ Cancellation Cancels a flight plan previously filed with the NAS

DZ Departure Signifies the activation of a proposed flight

UZ Center Boundary
Crossing

Current flight plan data as sent from ARTCC from which
flight is leaving to the ARTCC which the flight is entering

TZ Position Update Current position, altitude, and speed of a flight as tracked
by the NAS

AZ Arrival Signifies the termination of an active flight
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There are several ETMS data quality issues to note.  When ARTCC computers are particularly
busy they may temporarily cease to generate some ETMS messages. Furthermore, it is common to
find ETMS DZ messages missing, for which, an ETMS TZ message must be used to infer the take
off time of an aircraft.  ETMS AZ messages are also missing in archived data sets, for which ETMS
TZ messages may also be used to infer the landing time of an aircraft.  

3.6 OPSNET Data
Air Traffic Operations Network (OPSNET) data for all flights in the NAS was collected for
January 1, 2000 to the present date.  OPSNET data are described in comparison to the ASPM data
described in a previous section.  Importance will be placed on the differences between the two
databases.

The FAA maintains data on air traffic activity at ARTCC and preliminary airport traffic counts,
instrument operations and instrument approaches, as well as delays in the OPSNET database.  Air
traffic activity is the total of the number of operations at FAA and contractor controlled airports,
instrument operations at FAA and contractor controlled airports, and aircraft handled at ARTCCs.
A flight is under FAA control from the time the aircraft leaves the departure gate to when the flight
arrives at the arrival gate.  All OPSNET data are aggregate and not flight-specific.

Flight delay is separated into reportable, non-reportable, and international delay.  Reported delays
are measured with a 15-minute threshold, that is, when the elapsed flight time exceeds the flight plan
times filed with the FAA by 15 minutes.  Delays are recorded for the time the aircraft is at the gate,
on a taxiway, or holding en route.  Non-reportable delay is not recorded. Non-reportable delays are
delays caused by pilot initiated en route deviations around adverse weather, cancelled flights, and
delays due to aircraft mechanical problems.  Also, taxi times spent under airport or airline ramp
control (which are non-FAA entities) are also not part of OPSNET data.  International delays are
due to delay caused by initiatives imposed by facilities outside the United States (US). International
delays are recorded in the OPSNET database and are not separated.

Delays reported in OPSNET are also categorized as terminal or en route delays.  Terminal delays
are incurred as a result of conditions at the departure or arrival airport. En route delays occur when
aircraft incur airborne delays of 15 minutes or more as a result of an initiative imposed by a facility
to manage traffic.  En route delay statistics do not distinguish between circular airborne holding and
other types of airborne holding (e.g., path stretching).  OPSNET produces reports of delays by
category, class, and cause; it also reports ground delays as ground stops and EDCTs (GDPs).  The
total number of ground delays, total number of delay minutes, and the average amount of delay
minutes are reported.  In contrast, ASPM does not provide causal delay data; it only provides the
overall total number of delays.

Unlike ASPM, OPSNET allows queries by tower, instrument, or center, in addition to airport
searches.  ASPM may be queried for airports only.  OPSNET data may be gathered based on the
location of control towers: airport, state, or region.  This data includes the type and number of
operations for each area.  A specific facility may be chosen or a summary of all tower operations is
also available.  Filtering is available based on period, comparison or ranking, and FAA or contract
operations.  When looking at total operations by state, the data can be filtered on the individual
towers located in the state.  Only monthly and yearly reports are available for regional data, whereas
daily data are available for the other capabilities.  ASPM provides delay data down to the hour and
quarter-hour.  OPSNET is much more coarse; it simply gives the total for the day.

Several query filters are available in OPSNET.  Instrument operations in OPSNET are divided
into primary, secondary, and over flight categories.  Filtering by center is available also.  This can
be done by choosing individual centers or by choosing a state or region and receiving data for all
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centers in that state or region.  Summary reports are available for all centers also.  The reports
include the total number of aircraft handled by each center or in each state or region and the number
of domestic and oceanic aircraft, if selected.

In comparison, ASPM uses more data sources than OPSNET and has a more stringent data quality
control.  Recall that OPSNET only records IFR flights, while ASPM records IFR and VFR.  Data
in ASPM may be changed or updated at the last minute.  This allows for up-to-date information.
OPSNET data may not be changed or updated after a certain number of days.  The data are frozen
after the cutoff point, which can leave the data incomplete or incorrect in some cases.  Therefore,
total counts from each database may not be equivalent when comparing the two.  Table 4 provides
a summary of the data available through OPSNET with a comparison to ASPM.

Table 4.  Comparison of OPSNET and ASPM.

OPSNET Capabilities ASPM Capabilities
Query
Types

Delays, Towers, Instrument,
Centers

Delay Weather analyses, Taxi times, Individual
flight information, Cancelled flight information

Data
Sources

Airports, ARTCC ETMS, ARINC OOOI data, OAG, ASQP

Airports All airports, centers, towers, regions 50 airports (ASPM 50)
Time Quarter Hour, Hourly, Daily,

Monthly, Yearly
Quarter Hour, Hourly, Daily, Monthly, Yearly

Weather General – Delays were either
caused by weather or they were
not.

Ceiling, Visibility, Temperature, Wind (Angle
and Speed)

Delay Reported by category, class, and
cause

General – Flights were delayed or not

Other Rankings and comparisons are
available.

Rankings and comparisons are available.
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4 Statistical Analysis of the NAS
The analysis of aggregate statistical properties of the NAS is presented in this chapter. We establish
the aggregate properties of the NAS state variables, control actions, and performance measures by
investigating the statistical properties of these data over time periods spanning as much as one-to-
two years.  When possible, each variable is investigated from Jan. 2000 to the present date.  This
chapter is meant to be a survey of variables that describe the NAS; not all the variables that are
investigated later in Chapter 5 are reviewed here.  Some of the variables in this chapter are also left
out of the subsequent analysis in Chapter 5 due to the lack of a full data set.  Notes are provided
in the sections that cover such variables.  

Note: Appendix A describes the notation for the majority of the plots in this chapter.

4.1 Statistics of NAS State Variables
Next, we establish the aggregate properties of the following NAS state variables:

• Passenger Enplanements
- Yearly Trends
- Weekly Trends

• Scheduled Arrivals
• Scheduled Departures
• Actual Arrivals
• Actual Departures
• Total Operations
• Average Airport Arrival Rate
• IFR Traffic
• VFR Traffic
• Airport Ceiling Condition
• Airport Visibility Condition
• Changes in Runway Configuration

These NAS states span the passenger demand, airport states, and weather states.
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4.1.1 Seasonal Trends of Enplanements
BTS provides statistics of the monthly total number of enplanements for both domestic and
international air travel. We investigate domestic travel only.  Domestic revenue passenger
enplanements record the total number of passengers boarding an aircraft in the NAS. These data are
reported monthly for the years 1980-2002 in Figure 8.
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Figure 8.  Comparison of yearly data for Domestic enplanements identifies seasonal trends.

Enplanement data provides evidence of the seasonal trend in demand.  BTS provides the statistics of
the monthly total number of domestic enplanements for this analysis.  The BTS notes that the
traffic data are reported to the BTS by Large Certificated Air Carriers to include carrier groups:
Majors, Nationals, Large Regionals, and Medium Regionals. Traffic statistics for Small Certificated
Air Carriers and Commuter Air Carriers are not included.  For further information about fleet mix
statistics, see Appendix B.

4.1.2 Weekly Trends
It is common knowledge within the air traffic community that air travel is heavier during the week
than on weekends. This is easily verified by collecting departure and arrival counts by day of week

Sept 2001
National
Tragedy

Source: Bureau of Transportation Statistics
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(Monday, Tuesday, Wednesday, etc.). Figure 9 and Figure 10 show that average departure and
arrival counts are significantly less on Saturdays and Sundays than on weekdays. Moreover, traffic
volume is fairly uniform across the days of the week.

Figure 9.  Comparison of traffic based on day of week for 2000.

Figure 10.  Comparison of traffic based on day of week for 2001.

Weekly trends are further illuminated by Figure 11 through Figure 14.  Figure 11 shows
scheduled arrivals over time for the year 2000. This demonstrates that scheduled traffic volumes
tend to hover around three values: Weekday, Saturday, and Sunday. For this reason, weekend and
weekday statistics generally separate into separate clusters.

Figure 11.  Total traffic for scheduled arrivals in 2000.
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Figure 12.  Business day traffic for scheduled arrivals in 2000.

Figure 13.  Sunday traffic for scheduled arrivals in 2000.

Figure 14.  Saturday traffic for scheduled arrivals in 2000.

4.1.3 Scheduled Arrivals and Departures

Scheduled arrivals and departures are defined by OAG data from ASPM.  Arrival and Departure
data generally demonstrate the tri-modal distribution of Saturday, Sunday, and Weekday traffic, as
illustrated in Figure 15 through Figure 22.

2000 OAG Arrivals/Departures
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Figure 15.  Scheduled arrivals / departures for domestic flights in 2000.

Figure 16.  Scheduled arrivals / departures for domestic flights up to Sept 2001.

2001 OAG Arrivals/Departures
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Figure 17.  Scheduled arrivals / departures for domestic flights in 2001.

Figure 18.  Scheduled arrivals / departures for domestic flights in 2002.

The difference in arrivals and departures can be primarily attributed to flights departing from
ASPM airports with non-ASPM airport destinations and arrivals at ASPM airports from non-
ASPM airport origins.

2001 OAG Arrivals/Departures

2002 OAG Arrivals/Departures
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Figure 19.  Distributions for scheduled arrivals/departures for domestic flights in 2000.

Figure 20.  Distributions for scheduled arrivals/departures for domestic flights up to
Sept., 2001.

2000 Arrivals

2000 Departures

2001 Departures

2001 Arrivals
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Figure 21.  Distributions for scheduled arrivals/departures for domestic flights for 2001.

Figure 22.  Distributions for scheduled arrivals/departures for domestic flights for 2002.

2001 Departures

2001 Arrivals

2002 Departures

2002 Arrivals
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4.1.4 Actual Arrivals and Departures

Actual arrivals and departures are defined by OPSNET data.  Arrival and Departure data generally
demonstrate the tri-modal distribution of Saturday, Sunday, and Weekday traffic, as illustrated in
Figure 23 through Figure 26.

Figure 23.  Distributions for actual arrivals/departures for domestic flights in 2000.

Figure 24.  Distributions for actual arrivals/departures for domestic flights up to Sept., 2001.
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Figure 25.  Distributions for actual arrivals/departures for domestic flights for 2001.

Figure 26.  Distributions for actual arrivals/departures for domestic flights for 2002.
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4.1.5 Total Operations
Total Operations are reported from OPSNET data.  These data are described in Figure 27 through
Figure 33.

Figure 27.  Total Operations in 2000.

Figure 28.  Total Operations in 2001 up to September 10.

Figure 29.  Total Operations in 2001.

Figure 30.  Total Operations in 2002.

4.1.6 Average Airport Arrival Rates (AARs)
AARs are determined from ASPM data. (See Figure 31 through Figure 34) . These plots indicate
the AARs for the 50 ASPM airports for 2000 to date.

Sundays
Saturdays

Weekdays
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Figure 31.  Distributions for airport reported arrival rates for domestic flights in 2000.

Figure 32.  Distributions airport reported arrival rates for domestic flights up to Sept. 2001.

Figure 33.  Distributions airport reported arrival rates for domestic flights in 2001.

Figure 34.  Distributions airport reported arrival rates for domestic flights in 2002.

4.1.7 Airport Approach Conditions (IFR vs. VFR)
ASPM provides data to describe the meteorological conditions at airports.  VFR signifies a visual
approach condition at the airport, while IFR indicates that there were instrument approach
conditions at the airport.  IFR and VFR conditions were recorded in ASPM for every quarter hour
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at each airport.  The total number of 15-minute periods over all airports with IFR and VFR
conditions recorded were counted and used to compute the percentage of IFR vs. VFR conditions
for each day.  Figure 35 through Figure 37 show what percentage of IFR and VFR conditions
occurred every day over all ASPM-50 airports from January of 2000 to May 2002.

Figure 35.  Average IFR vs. VFR conditions for 2000.

Figure 36.  Average IFR vs. VFR conditions for 2001.
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VFR

IFR

VFR
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Figure 37.  Average IFR vs. VFR conditions for 2002.

IFR

VFR
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4.1.8 Airport Ceiling Conditions
ASPM provides data to describe the ceiling conditions at airports.  Figure 38 through Figure 40
indicate the average ceiling conditions for the ASPM-50 airports for 2000 to the present date.

Figure 38.  Average ceiling conditions for 2000.

Figure 39.  Average ceiling conditions for 2001

Figure 40.  Average ceiling conditions for 2002.
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4.1.9 Airport Visibility Conditions
ASPM provides data to describe the visibility conditions at airports.  Figure 41 through Figure 43
indicate the visibility conditions for the ASPM-50 airports for 2000 to date.  Note: There was a
severe outlier in the July 11, 2000, so the visibility data record for that date was removed from the
2000 data set.  

Figure 41.  Average visibility conditions for 2000.

Figure 42.  Average visibility conditions for 2001.

Figure 43.  Average visibility conditions for 2002.
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4.1.10 Changes in Runway Configuration Conditions
As shown in Figure 44 through Figure 47, ASPM provides data describing the total number of
runway configuration changes for ASPM-50 airports.  While not a direct measurement of weather
conditions, this statistic is highly linked to wind speed and direction.  Additionally, it is linked to
traffic demand.  Runway configuration changes were fairly constant from the beginning of 2000
through the summer of 2001.  However, in August 2001 there is a significant increase.  The events
of September 11, 2001 seem to have mitigated this increase in configuration changes (probably due
to lower volume) for a short time.  Note that the mean number of runway configuration changes for
2002 is over twice that of the mean for 2000.

Figure 44.  Average number of runway configuration changes for 2000.

Figure 45. Average number of runway configuration changes for 2001.

Figure 46.  Average number of runway configuration changes for 2000.

Figure 47. Average number of runway configuration changes for 2002.
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4.2 Statistics of NAS Controls
Next, aggregate properties of the following NAS controls are reviewed:

• Ground Delay Programs
• Cancellations
• Ground Stops
• MIT Restrictions
• Airborne Holding

4.2.1 Ground Delay Programs
During a GDP, the arrival flow rate into an airport with a capacity shortfall (or abundance of
demand) is reduced to avoid inundating the airport with more arrivals than it can safely
accommodate.  Arrival demand is brought in line with arrival capacity by creating a virtual queue of
arrival slots. The number of slots in any given hour corresponds to the estimated number of aircraft
that the airport can land. Each aircraft estimated (or scheduled) to arrive during the GDP time
horizon is assigned to an arrival slot (time interval). From this Controlled Time of Arrival (CTA), a
Controlled Time of Departure (CTD) is computed for each aircraft by subtracting the estimated
flying time. The difference between the CTD of a flight and the estimated arrival time just prior to
implementing the GDP is the amount of FAA-issued ground delay that flight must absorb. The net
effect of a GDP is to transfer anticipated airborne holding back onto the ground.

There are many reasons why a GDP might be run. Sometimes, traffic flow into an airport is
reduced to slow down the flow through an unrelated piece of airspace. Other times, there is an
unusually large arrival demand that exceeds normal airport acceptance rates. But most of the time, a
GDP simply reflects deterioration in airport conditions. Weather is the most frequent culprit. Thus,
frequency and magnitude of GDPs make a strong statement about NAS conditions.

A simplistic metric of GDPs is how many are being run on a given day. This gives a rough
indication of how many airports are in a state of demand-capacity imbalance. A typical day in the
NAS might have 1 or 2 GDPs in place, while 5 or more GDPs indicates NAS-wide problems.

A more refined metric should take into account the scope and magnitude of the GDP. The period of
duration varies with the GDP, with the most common duration being in the 4-6 hour range. In
addition to its temporal scope, there is a geographical scope. Flights bound for a GDP airport are
often exempt from FAA-issued ground delay based on the proximity of their origin airport from the
GDP airport.  It is quite common to restrict the application of ground delays to those flights
originating within traffic control centers that are immediately adjacent to the traffic control center
that houses the GDP airport (called a first tier program). A smaller geographic scope of a program
is a way of mitigating the potential damages of weather forecast uncertainty: larger scope programs
(e.g., the entire NAS) tend to capture flights departing earlier in time and, therefore, run the risk of
assigning them ground delays that cannot be recovered in the event of a GDP cancellation.

Another GDP statistic to consider is average ground delay per flight. This can be computed by
dividing total ground delay by the number of flights to which ground delay was applied ("affected
flights"). We have already seen that the numerator is essentially constant. The denominator will
vary with the geographic scope of the program. Thus, this statistic would say very little about the
overall scope and magnitude of the program.

For this reason, it is often beneficial to consider the total number of minutes of ground delay issued
in the GDP rather than average ground delay per flight. This figure will increase with the number of
flights in the program and with the duration of the program, but is independent of the geographic
scope chosen for the program. Of course, one could compute average delay by dividing total
ground delay by number of flights involved in the program (whether they were exempt from ground
delay or not).
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For this study, GDP data were collected from the ATCSCC (Herndon, VA).  Figure 48 and Table
5 show the aggregate GDP data across the NAS for the years 1998 through 2001.  These data
indicate an increase in the use of GDPs each year.  When all the GDPs are analyzed in terms of the
airport where the GDP is issued, as shown in Figure 49 through Figure 58, it is clear that there are
certain airports for which GDPs are issued more than others.  These airports are:  ATL, BOS,
EWR, LAX, LGA, ORD, PHL, and SFO.  The three leading airports where GDPs are issued (based
on 2000 and 2001 data) are: SFO, LGA, and ORD.
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Figure 48.  The number of GDPs issued per month in 1998 through 2001.

Table 5.  Statistics for GDPs issued during 1998 through 2002.

Year Number of
GDPs

Average per
Day

1998 513 1.4

1999 705 1.9

2000 1083 3.0

2001 799   2.8*

2002 398   1.6**

Notes: * The 2001 average is determined using Jan.-Aug. (243 days) data only.
**     The 2002 number of GDPs and average is based on using Jan.-Aug. (243 days) data only.
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In Figure 49 through Figure 52, airports that ran GDPs in the period from January 1996 to April
2002 are compared.
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Figure 49.  Airports where GDPs occurred in 1998.
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Figure 50.  Airports where GDPs occurred in 1999.
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Figure 51.  Airports where GDPs occurred in 2000.
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Figure 52.  Airports where GDPs occurred in 2001.
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Figure 53 through Figure 58 further describe the statistics of GDPs from 1998 to 2002.

Figure 53.  Number of daily GDPs that occurred in 19984.

Figure 54.  Number of daily GDPs that occurred in 1999.

Figure 55.  Number of daily GDPs that occurred in 2000.

                                                
4 A Poisson distribution was assumed for determining the mean and standard deviation for GDP figures.
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2000 GDPs

Daily GDP data not available
before Sept 1998
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Figure 56.  Number of daily GDPs that occurred in 2001 up to Sept. 10, 2001.

Figure 57.  Number of daily GDPs that occurred in 2001.

Figure 58.  Number of daily GDPs that occurred in 2002.

Next, the geographic distribution of GDPs is illustrated.  In Figure 59 through Figure 63, the
areas of the circles at each airport are proportional to the number of GDPs, which occurred at the
respective airport.  Those colored red have a total number of GDPs that is higher than one
standard deviation above the mean.  Those colored yellow are within one standard deviation from
the mean.  Blue is used for airports with a total number of GDPs less than one standard deviation
below the mean (thus, these circles are very small).  These figures show that GDPs are
concentrated at the major hub airports5, SFO, and in the northeast corridor.  This spatial distribution
does not change much year to year.

                                                
5 Appendix G presents the major hub airports as defined by the BTS.

2001 GDPs

2001 GDPs

2002 GDPs

Daily GDP data
purposely
omitted for

Sept.11 2001 –
Dec. 31, 2001

At the time of publication,
Daily GDP data not available

after June 2002
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Figure 59.  Geographical location of airports (and magnitude) where GDPs occurred in 1998.

Figure 60.  Geographical location of airports (and magnitude) where GDPs occurred in 1999.

Figure 61.  Geographical location of airports (and magnitude) where GDPs occurred in 2000.
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1999 GDPs

2000 GDPs
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Figure 62.  Geographical location of airports (and magnitude) where GDPs occurred in 2001.

Figure 63.  Geographical location of airports (and magnitude) where GDPs occurred in 2002.

2001 GDPs

2002 GDPs

These data do not reflect
a full year of data.
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Figure 64.  Number of delay minutes due to GDPs that occurred in 2000.

Figure 65.  Number of delay minutes due to GDPs that occurred in 2001 prior to September 11.

Figure 66.  Number of delay minutes due to GDPs that occurred in 2001.

Figure 67.  Number of delay minutes due to GDPs that occurred in 2002.

2000 GDP Delay

2001 GDP Delay

2001 GDP Delay

2002 GDP Delay
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Figure 68.  Duration of GDPs that occurred in 2000.

Figure 69.  Duration of GDPs that occurred in 2001 prior to September 11.

Figure 70.  Duration of GDPs that occurred in 2001.

Figure 71.  Duration of GDPs that occurred in 2002.
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4.2.2 Cancellations
ASPM cancellations are recorded for arrival as well as departure traffic; these statistics are
illustrated next in Figure 72 and Figure 73.  Note that the peak number of cancellations for this
period is highly related to the location of the weather activity.  Appendix C provides details of how
these cancellations vary with respect to weather conditions.

Figure 72.  Cancellations at 50 major airports up to Sept. 10 in the year 2001.
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Figure 73.  Cancellations at 50 major airports up to Sept. 10 in the year 2001.
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4.2.3 Ground Stops
A Ground Stop (GS) is a traffic flow initiative in which all traffic is banned from departure for a
period of specification. This is usually implemented to reduce the flow of traffic in an unexpected
situation, such as highly unpredictable convective weather activity. The criterion for inclusion of a
GDP is based on arrival time.  Unlike a GDP, the criterion for inclusion in a GS is departure time.
For instance, a 11:00Z - 11:30Z GS at the Cleveland ARTCC (ZOB) means that no flights within
ZOB are allowed to depart between 11:00Z and 11:30Z. A GS is usually short-lived, highly tactical
maneuver. For this reason, the GS frequency is an indication of unpredictable, disruptive events in
the NAS.

For this study, GS data were collected from the ATCSCC (Herndon, VA).  Table 6 and Figure 74
through Figure 80 show the aggregate GS data across the NAS for the years 2000 through 2002.
Figure 81 through Figure 83 show the geographic distribution of GS data across the NAS for
2000 through 2002.  An increase during the summer months is primarily resulting from the
convective weather season.  In September 2001, a drop in the traffic volume across the NAS
occurred after the September 11th tragedy, and thus, the number of GSs during the remainder of the
year was low.

Table 6.  Statistics for GSs issued during 2000 through 2002.

Year Number of
GSs

Average per
Day

2000  491*   1.8*

2001 955  2.6

2002    786**     3.2**

Notes: * Due to a lack of data, the 2000 average is determined using April – Dec. (275 days) only.
** The 2002 number of GSs and average is based on using Jan. – Aug. (243 days) data

only.
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Figure 74.  The number of ground stops issued per month in 2000.
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Figure 75.  The number of ground stops issued per month in 2001.
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Figure 76.  The number of ground stops issued per month in 2002.
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Figure 77.  Number of daily GSs that occurred in 20006.

Figure 78.  Number of daily GSs that occurred in 2001 up to Sept. 10, 2001.

Figure 79.  Number of daily GSs that occurred in 2001.

Figure 80.  Number of daily GSs that occurred in 2002.

                                                
6 These are GSs that were run independent of GDPs.  A Poisson distribution was assumed for determining the mean and
standard deviation for GS figures.
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Figure 81.  Geographical location of airports (and magnitude) where GSs occurred in 2000.

Figure 82.  Geographical location of airports (and magnitude) where GSs occurred in 2001.

Figure 83.  Geographical location of airports (and magnitude) where GSs occurred in 2002.

2000 GSs

2001 GSs

2002 GSs
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4.2.4 MIT Restrictions
TFM places MIT restrictions on lines of aircraft traveling in the same direction to reduce the rate of
flow.  A MIT of 30 miles means that each aircraft within the flow on a jet route must maintain at
least 30 miles of separation between itself and the aircraft in front of it. MIT restrictions are usually
placed at the boundary of adjacent sectors or centers to provide the spacing necessary for safe travel
with the downstream sector or center. Some MIT restrictions are standard operating procedure. But
most of the time, they are indicative of a combination of excessive demand and degraded capacity.

Since MIT restrictions often impact more than one center, they are coordinated through and
electronically recorded by the ATCSCC. For each restriction, there is a record of the stream of
traffic to which it applies, the start and end times of the restriction, and the required spacing. The
primary user of this database is the Quality Assurance (QA) department of the ATCSCC. We
obtained NAS-wide MIT restrictions data for years 2000 and 2001 from ATCSCC QA. (In the
course of our research, we were not able to obtain MIT data for year 2002.) We used this data to
compute year-long summary statistics for each of the 20 centers in the continental US and for the
entire NAS. The summary statistics in Table 7 were computed as follows:

• The average duration of a restriction equals the end time minus the start time.
• The average number of restrictions per day equals the total number of restrictions divided by

366 (for the 2000 leap year) or 365 days (for the 2001 year).
• The average restriction size is the total of all restriction sizes divided by the total number of

restrictions.
• Restriction-hours, which we used to quantify the magnitude of a MIT restriction, equals the

product of the duration and the spacing requirement. Units are in mile-hours.  
• Standard deviations (SDs) are computed in an analogous fashion.

The centers are sorted by decreasing average number of restrictions.

Based on these data, information about the MIT restrictions can be derived as illustrated in Figure
84. Note that the number of restrictions (count) is a reasonable surrogate for magnitude (note:
magnitude is restriction-hours divided by 50, to scale it down for presentation purposes). That is,
these curves follow each other fairly closely, except for ZTL. Size tends to decrease with count, that
is, if a center needs more restrictions, then it probably needs more spacing too.  The duration is
fairly constant across the center (with notable exceptions: ZBW and ZJX have unusually lengthy
restrictions). Note: duration values are in 15-minute increments, to make it scale with the rest of the
curves.  Finally, ZOB has unusually large restrictions (in miles).
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Table 7. Aggregate MIT restrictions statistics center by center for 2000.

Center

Ave.
Number
Per Day

SD
Number
Per Day

Ave.
Duration

(Hours)

SD
Duration

(Hours)

Ave.
Size

(Miles)

SD
Size

(Miles)

Ave.
Restriction-

Hours
Per Day

(Mile-Hours)

SD
Restriction-

Hours
Per Day

(Mile-Hours)

ZNY 27.99 15.71 2.41 1.34 17.33 5.67 1179.67 29.04

ZDC 27.28 12.02 2.1 1.47 20.53 7.49 1264.2 40.61

ZAU 24.87 10.77 1.89 0.91 18.72 7.71 867.73 21.72

ZTL 22.61 12.15 1.36 1.33 16.4 3.51 541.04 35.29

ZOB 21.66 12.89 1.92 1.26 24.57 6.12 1031.13 33.03

ZID 12.19 9.17 1.35 1.23 20.61 5.34 346.27 26.73

ZLA 10.36 6.87 2.18 1.57 15.51 6.39 342.65 24.23

ZBW 5.5 4.18 2.67 1.04 16.78 3.79 246.39 21.34

ZME 5.41 4.77 1.43 0.95 18.17 5.15 146.08 22.93

ZHU 3.03 2.56 0.92 0.53 13.2 4.08 39.31 11.46

ZOA 2.92 2.55 1.69 0.66 14.16 4.67 70.92 13.34

ZJX 2.78 3.37 2.86 2.28 17.76 5.95 144.53 50.35

ZAB 2.64 2.54 1.43 1.2 13.81 5.2 54.54 21.11

ZFW 2.49 2.65 1.54 1.72 11.79 4.01 48.52 22.38

ZKC 1.96 2.35 1.58 0.79 19.2 4.96 61.09 20.21

ZMP 1.26 1.24 1.55 0.97 15.3 5.42 31.47 27.56

ZMA 0.57 1.11 2.44 1.47 12.12 4.1 17.48 23.47

ZDV 0.42 1.42 1.72 0.67 15.31 5.55 11.53 16.65

ZLC 0.2 0.86 1.83 1.06 14.27 6.96 5.75 22.78

ZSE 0.02 0.18 2.72 0.6 11.67 3.73 0.53 13.76
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Figure 84.  MIT data comparison for the year 2000.
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Table 8.  Aggregate MIT restrictions statistics center by center for 2001.

Center

Ave.
Number
Per Day

SD
Number
Per Day

Ave.
Duration

(Hours)

SD
Duration

(Hours)

Ave.
Size

(Miles)

SD
Size

(Miles)

Ave.
Restriction-

Hours
Per Day

(Mile-Hours)

SD
Restriction-

Hours
Per Day

(Mile-Hours)

ZOB 15.54 9.84 1.34 0.79 22.47 5.30 475.44 21.24
ZDC 14.65 11.47 2.00 1.21 21.22 6.79 657.35 35.24
ZTL 13.70 14.66 2.07 1.02 18.66 5.09 523.81 21.23
ZNY 10.84 8.31 1.27 0.80 16.70 3.49 239.73 17.25
ZAU 7.21 9.47 1.78 0.70 23.52 6.61 304.63 21.85
ZLA 6.41 5.53 2.03 0.81 15.80 6.49 207.13 19.94
ZID 5.57 5.32 1.24 0.78 20.92 5.93 147.74 21.26
ZOA 3.61 2.89 1.67 0.63 13.41 4.94 82.80 14.28
ZME 3.35 3.59 1.40 0.88 16.96 5.72 84.48 21.75
ZHU 3.06 2.59 0.94 0.60 14.12 4.22 43.77 12.88
ZJX 2.17 3.00 2.33 1.04 16.48 4.86 84.71 21.81
ZFW 1.92 2.29 1.20 0.73 11.04 3.68 27.28 11.98
ZBW 1.71 2.55 1.41 0.69 18.92 5.48 47.58 18.69
ZKC 1.49 2.37 2.25 0.88 18.16 4.49 60.36 19.20
ZAB 0.92 1.27 1.94 1.12 13.27 4.54 24.21 20.20
ZMA 0.91 1.71 1.50 0.83 15.44 5.50 21.69 16.70
ZMP 0.39 0.85 1.38 0.60 15.17 5.00 8.63 14.82
ZDV 0.16 0.63 1.87 0.63 18.73 7.73 5.56 17.10
ZSU 0.08 0.33 1.73 0.73 17.50 6.55 2.69 23.04
ZLC 0.01 0.10 1.50 0.00 20.00 0.00 0.16 0.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Figure 85.  MIT data comparison for the year 2001.
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Figure 86.  Geographical distribution for the average daily number of MIT restrictions per center
for 2000.

Figure 87.  Geographical distribution for the average daily number of MIT restrictions per center
for 2001.

     = Above 1 standard deviation

     = Within 1 standard deviation

     = Below 1 standard deviation

The high concentration of MIT
restrictions shows the funneling
effect of traffic in the northeast.

     = Above 1 standard deviation

     = Within 1 standard deviation

     = Below 1 standard deviation

The high concentration of MIT
restrictions shows the funneling
effect of traffic in the northeast.
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4.2.5 Airborne Holding
Holding is used for en route aircraft when sudden changes in the traffic flow inhibit aircraft from
landing in or from entering into neighboring centers (e.g., exiting ZOB into ZNY) or into airports in
the TRACON area.  Often, airborne holding is preceded by a GS or some other event, like a sudden
change in MIT restrictions at a sector boundary.  Thus, a GS or a MIT restriction change may be
correlated with holding data.  

Two ways to delay an aircraft en route are path stretching and speed reduction (or some
combination thereof). Speed reduction is hard to easily detect, so we will limit our attention to path
stretching, which takes multiple forms (e.g., Figure 88):

• Circular holding patterns – a race track type of loop usually at a designated fix location,
and

• Vectoring, S-turns, and Path deviations – one or more repeated pattern of sharp,
direction heading changes designed to “stretch the path” and thus delay traffic.

Detection of airborne holding from historical data is not a simple matter. In some parts of the
country, databases are maintained of holding instances. Even these tend to be incomplete, since they
are based on hand-written records of controllers; in periods of heavy demand, they may be too busy
to record holding events. Thus, records can be incomplete when we would most like to have them.

   
 (a) Circular Holding (b) Path Stretching

Figure 88.  Two example forms of holding.

Using flight track data, the easiest type of holding to detect (in an automated fashion) is circular
holding patterns. We used the circular holding algorithm in POET to compile circular holding
pattern statistics based on ETMS data. The algorithm seeks flight instances in which a flight track
crosses over itself. The area of the holding loop must be greater than some minimum area (set to
zero).  Also, in order to avoid potential false positives in the terminal area (where a 1 minute update
in the ETMS data may cause problems), the circular holding pattern loop must be at least 30 miles
from the origin airport and at least 10 miles away from the destination airport. It is important to note
that this algorithm has binary output: it simply says whether or not a flight endured holding under
these criteria, not the number of circles nor the duration of holding.

Figure 89 illustrates the number of aircraft that experienced circular holding each day for year
2001 data.  An insufficient amount of data was available during the course of this study to include a
full set of data for the year 2000.  Furthermore, there are 86 days worth of data missing from the
2001 data set.  For this reason, circular holding pattern data was not included in the cluster analysis.
Note that the number of planes that experience circular holding is variable throughout 2001 that
appears to increase during the summer convective weather season months.
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Figure 89.  Distribution of circular holding for the year 2001.

A regression-based algorithm was used to infer terminal area holding.  It works as follows.  Once a
flight takes off, ETMS makes periodic refinements of the estimated time of arrival (ETA). ETMS
has knowledge of the current flight status (e.g., filed flight plan, current trajectory and speed), but
has no knowledge of future delay events. Suppose that a flight were held by TFM for 15
minutes. In the absence of other forms of predictive interference, all of the ETA predictions made
by ETMS prior to the holding event would be 15 minutes less than the actual arrival time, while
all the ETA predictions made after the holding event would be equal to the actual arrival time.
There would be a noticeable 'jump' in the value of the ETA predictions made during the time of
the holding event.  The amount of the jump would be commensurate with the amount of holding.
An algorithm developed by Metron Aviation uses this basic principle to infer from ETA history
how much holding a flight incurred, and the approximate start and stop times of the holding
event.  The algorithm is necessarily statistical, since there is inherent noise in the ETMS
predictive model.  Terminal area holding is inferred by considering only those holding events that
occurred within a reasonable proximity to the arrival airport (e.g., 30 minutes).  Such holding may
include circular holding patterns, but is not limited to circular holding.

Figure 90 illustrates the number of aircraft that experienced terminal area holding each day for year
2001 data.  The figure shows the total number of minutes (over all flights) of unanticipated delay
that occurred within 30 minutes of arrival. The ASPM 50 airports were used in this analysis. One
can clearly see the dip in September, associated with the September 11 tragedy.  An insufficient
amount of data was available during the course of this study to include a full set of data for the year
2000.  For this reason, terminal area holding data was not included in the cluster analysis.

Figure 90.  Distribution of terminal area holding in 2001.
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4.3 Statistics of NAS Performance
The following performance statistics are reviewed next:

• OAG-Based Gate Departure Delays
• Ave. Airport Departure Delay
• Ave Gate Delay
• Ave. Taxi-Out Delay
• Ave. Airborne Delay
• Ave. Taxi In Delay
• Ave Arrival Delay
• Ave. Block Delay
• Total Delays
• Delays Caused by Weather
• ASPM Airport Performance Metric

Performance statistics describe delay in the NAS.  The following discusses how average daily delay
minutes were calculated using the ASPM Quarter Hour Delays and Performance Scores data.  The
total minutes of gate delay, taxi out delay, and airport departure delay were summed for each day
and divided by the total count of departures as measured by ASPM.  The total minutes of taxi in,
airborne delay, block delay and OAG-based arrival delay were summed for each day and divided by
the total count of arrivals for that day as measured by ASPM.

Taxi delay was computed in ASPM based on an estimated parameter that represents taxi time under
optimal operating conditions.  This parameter was based on aircraft queue lengths by carrier and
airport, and was called unimpeded taxi-out time.  Unimpeded taxi-out time is the taxi-out time with
neither congestion, nor weather, nor any other factors, which could cause delay in an aircraft’s
movement from leaving the gate to the taking off.  Aspects such as the combination of gates and
runways, carriers at each airport, location of the carriers’ gates relative to the runways that were
used for takeoff, and seasonal considerations were all taken into account.
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4.3.1 OAG-based Gate Departure Delay
OAG-based gate departure delays, as shown in Figure 91 through Figure 94, are based on ASPM
data.  Gate delay is defined as the actual gate departure time minus the OAG-scheduled departure
time.

Figure 91.  Total minutes of gate departure delay for domestic flights in 2000.

Figure 92.  Total minutes of gate departure delay for domestic flights up to Sept. 2001.

Figure 93.  Total minutes of gate departure delay for domestic flights in 2001.

Figure 94.  Total minutes of gate departure delay for domestic flights in 2002.
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4.3.2 Average Airport Departure Delay
Airport Departure Delay is defined as the actual time off, minus the scheduled gate departure time
and the unimpeded taxi-out time.  Figure 95 through Figure 98 presents the airport departure
delay statistics.

Figure 95.  Distributions for airport departure delay for domestic flights in 2000.

Figure 96.  Distributions for airport departure delay for domestic flights up to Sept. 2001.

Figure 97.  Distributions for airport departure delay for domestic flights in 2001.

Figure 98.  Distributions for airport departure delay for domestic flights in 2002.



60

4.3.3  Average Gate Delay
Average Gate Delay statistics, as shown in Figure 99 through Figure 102  are defined as the actual
gate departure times, minus the scheduled gate departure times.

Figure 99.  Distributions for airport gate delay for domestic flights in 2000.

Figure 100.  Distributions for airport gate delay for domestic flights up to Sept. 2001.

Figure 101.  Distributions for airport gate delay for domestic flights in 2001.

Figure 102.  Distributions for airport gate delay for domestic flights in 2002.
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4.3.4 Average Taxi-Out Delay
ASPM data are used to investigate average taxi-out delay, as illustrated in Figure 103 through
Figure 106 .

Figure 103.   Distributions for average taxi out delay for domestic flights in 2000.

Figure 104.  Distributions for average taxi out delay for domestic flights up to Sept. 2001.

Figure 105.  Distributions for average taxi out delay for domestic flights in 2001.

Figure 106.   Distributions for average taxi out delay for domestic flights in 2002.
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4.3.5 Average Airborne Delay
ASPM is used to identify airborne delay, as illustrated in Figure 107 through Figure 110.
Airborne delay is defined as the actual airborne time minus the carrier submitted time en route.

Figure 107.  Distributions for airborne delay for domestic flights in 2000.

Figure 108.  Distributions for airborne delay for domestic flights up to Sept. 2001.

Figure 109.  Distributions for airborne delay for domestic flights in 2001.

Figure 110.  Distributions for airborne delay for domestic flights in 2002.
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4.3.6 Average Taxi-In Delay
ASPM data are used to investigate taxi-in delay, as illustrated in Figure 111 through Figure 114.
Taxi-In Delay is defined as actual Taxi-In time minus the ASPM defined Unimpeded Taxi-In time.

Figure 111.  Distributions for taxi in delay for domestic flights in 2000.

Figure 112.  Distributions for taxi in delay for domestic flights up to Sept. 2001.

Figure 113.  Distributions for taxi in delay for domestic flights in 2001.

Figure 114.  Distributions for taxi in delay for domestic flights in 2002.
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4.3.7 Average Arrival Delay
The average airport arrival delay is the average delay for gate-in, defined as the actual gate-in minus
the scheduled gate-in.  Average arrival delay statistics are illustrated in Figure 115 through Figure
118.

Figure 115.  Distributions for average arrival delay for domestic flights in 2000.

Figure 116.  Distributions for average arrival delay for domestic flights up to Sept. 2001.

Figure 117.  Distributions for average arrival delay for domestic flights in 2001.

Figure 118.  Distributions for average arrival delay for domestic flights in 2002.
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4.3.8 Comparison of Taxi-In and Taxi-Out Delay
ASPM data are used to compare total taxi-in and taxi-out delay minutes per day.  Figure 119
through Figure 122 illustrate taxi-in and taxi-out delay comparisons.  The vast difference in the
average and standard deviation of the two suggests that the root causes are vastly different.  The vast
difference in the average and standard deviation of the two suggests that the root causes are vastly
different.  Fundamentally, the differences (in mean and standard deviation) arise from the fact that
there tends to be substantial queuing for departures (to keep pressure on the runways) as they wait
for gaps in the arrivals stream which leads to the increases in Taxi Out delays.  Departures are
much more subject to NAS constraints (e.g., MIT restrictions) as well as interactions with arrival
flows in terms of sharing runways.  By comparison, unless an arrival has to cross the runway or
wait for a gate to be available, it usually proceeds nearly directly to its gate at or near an
"unimpeded-like" Taxi In time.  Thus, the mean is lower and the variance is quite small.

As far as why some days the Taxi Out delay is on the same order as the Taxi In delay, there can be
several reasons.  First, depending on the day of the week, the traffic loading might be quite less
(e.g., Sunday vs. Thursday).  Also, depending on the "dynamics" of the rest of the NAS, the
phasing of banking operations at hub airports might be more or less optimal.  When there are late
arrivals, departures that might nominally be favored end up having to wait as the arrivals trickle in.
For future research, it might be interesting to look separately at the behavior of hub airports
(Chicago, Denver) vs. a constant pressure airport like LGA.  

Figure 119.  Distributions for taxi-in vs. taxi-out delay for domestic flights in 2000.
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Figure 120.  Comparison of taxi-in vs. taxi-out delay for domestic flights up to Sept. 2001.

Figure 121.  Comparison of taxi-in vs. taxi-out delay for domestic flights in 2001.

Figure 122.  Comparison of taxi-in vs. taxi-out delay for domestic flights in 2002.
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4.3.9 Average Block Delay
Block times span gate out to gate in.  Block delay is defined as the actual Gate-to-Gate minus the
scheduled Gate-to-Gate.  Block delay statistics are presented in Figure 123  through Figure 126 .

Figure 123.  Distributions for block delay for domestic flights in 2000.

Figure 124.  Distributions for block delay for domestic flights up to Sept. 2001.

Figure 125.  Distributions for block delay for domestic flights in 2001.

Figure 126.   Distributions for block delay for domestic flights in 2002.
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4.3.10 Total Delays
Total delays based on OPSNET data are presented in Figure 127 through Figure 130.  This is a
count of operations which have reportable delay based on OPSNET standards.

Figure 127.   Total delayed operations in 2000.

Figure 128.   Total delayed operations in 2001 up to September, 2001.

Figure 129.   Total delayed operations in 2001.

Figure 130.   Total delayed operations in 2002.
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4.3.11 Delays Caused by Weather
One finding of our interview with ATCSCC subject matter experts was that the notion of a "typical"
day in the NAS depends on the season. They specified that a typical day in the convective weather
season (May through September) is quite different from a typical day in the non-convective weather
season. Traffic flow initiatives are required more often in the convective weather season, and often
under more stressful conditions. This is due to the increased air travel in the summer months and
the unpredictable nature of convective weather activity.

Figure 131  confirms the dramatic increase in weather-related delays during the convective weather
season. For this reason, we split our data sets into two groups: days within the convective weather
season and days outside the convective weather season. Otherwise, natural variance within these two
groups will undoubtedly complicate the results of the cluster analysis. A separate analysis could be
done to refine the boundaries of the convective season, but we chose May 15 to September 15.

Figure 131.   Comparison of yearly data for weather related delays.

When an airport is not operating in its optimum configuration, an impact condition is identified and
recorded in OPSNET. OPSNET accepts a set of weather conditions that the user is responsible for
determining. Data entry specifics are contained in the OPSNET User’s Manual:
(1) Wind. Winds that cause less than optimum runway configuration, wind shear, or other adverse

conditions.
(2) Rain. The presence of rain affecting the operating condition of runway(s) and/or taxiway(s).
(3) Snow and/or Ice. The presence of snow or ice affecting the operating condition of runway(s)

and/or taxiway(s), including any combination of: (a) Poor or nil braking action; or (b) Snow/ice
removal operations.

(4) Low Ceilings. Cloud conditions adversely affecting the operation, at or below takeoff, landing,
or VFR requirements.

(5) Low Visibility. Reduced visibility adversely affecting the operation, at or below takeoff, landing,
or VFR requirements.

(6) Tornado or Hurricane. The presence of a tornado or a hurricane.
(7) Thunderstorm. The presence of a thunderstorm.

Figure 132 through Figure 135 present the total number of OPSNET weather related delays,
which occurred during the period from January 1, 2000 to August 21, 2002.  A 21-day (3 week)
moving average is overlaid on each figure to give a feel for the trend of the data.

Source: OPSNET
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Figure 132.  Weather Related Delays vs. Non- Weather Related Delays (and 21 day moving
average) in 2000.

Figure 133.  Weather Related Delays vs. Non-Weather Related Delays (and 21 day moving
average) in 2001 prior to September 11.

Source: OPSNET

Source: OPSNET
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Figure 134.  Weather Related Delays vs. Non-Weather Related Delays (and 21 day moving
average) in 2001.

Figure 135.  Weather Related Delays vs. Non-Weather Related Delays (and 21 day moving
average) in 2002.

4.3.12 ASPM Airport Performance Metric
Definitions provided in the Documentation for Airport Utilization Metrics [FAA99, FAA02]
were used in order to calculate daily airport performance scores for the ASPM 21 airports.  These
metrics were developed by MITRE’s Center for Advanced Aviation System Development
(CAASD) for measuring the performance of the NAS by measuring how well each airport’s
arrival and departure capacities are used when there is demand to be met.  See [C01] for a
complete explanation of the airport performance metric.  This metric is intended to locate where
further analysis could be done to identify contributing factors when performance is either
exceptionally good or significantly less than optimal.  It also takes into account the relative
importance of meeting arrival and departure demand in each time period.  Figure 136 through
Figure 139  illustrates ASPM airport performance metric statistics.

Source: OPSNET

Source: OPSNET
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Figure 136 .  Airport Performance Scores7 for 2000.

Figure 137 .  Airport Performance Scores for 2001 through September 10, 2001.

Figure 138 .  Airport Performance Scores for 2001.

Figure 139 .  Airport Performance Scores for 2002.

                                                
7 Statistics are out of 100 point scale and are determined over the ASPM 21 airports for each day.

Maximum

Minimum
Mean

Standard Deviation

Five Highest Standard
Deviations per Year
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5 Cluster Analysis
In this Chapter, we pursue two interests: the design of an optimal NAS feature vector, and the
identification of several “types” of days in the NAS that capture major variations in overall
operational behaviors of the NAS.  

We design an “optimal” NAS feature vector with components that fully characterize the
macroscopic behavior of the NAS on any given day.  Statistical criteria are invoked to classify each
component in the NAS feature vector as either typical or atypical of NAS performance.  Whereas
the previous chapter surveyed many potential variables to include into the NAS feature vector, we
now wish to classify the NAS feature vector with as few variables as necessary.  Too large a
number of components may make the NAS feature vector difficult to interpret. Furthermore – as we
show in this Chapter – we have reason to believe that many of the potential components of a NAS
feature vector may be strongly correlated. For instance, if taxi-out times were unusually high, one
would expect block delays to be high as well.

To understand variable dependencies, we use cluster analysis to partition the variables into groups
so that within each group, the variables display similar behavior. From any of these cluster groups,
one may select a single variable as representative.  Or, variables within groups may be summed
(e.g., number of GDPs + number of GSs), thus reducing the number of components to be
considered for a NAS feature vector.

The second part of this Chapter investigates the classification of several “types” of days in the
NAS.  Once again we use a cluster analysis approach to pursue this objective. Given the “optimal”
NAS feature vector as a basis, we investigate the collection of NAS feature vectors from Jan. 1,
2000 through Sept. 10, 2001, to identify the natural clusters of “types” of days.  In the analysis,
we did not force any partitions. Rather, the data naturally reveals certain “types” of days in the
NAS.  In particular, the analysis shows that weather and GDPs play an important role in
determining the “types” of days in the NAS.

The term "cluster analysis" is necessarily broad and encompasses a wide variety of clustering
algorithms. Even within a particular statistical endeavor, there can be many ways to cluster the data
into meaningful groups. For instance, distance-based cluster algorithms map the variables into n-
dimensional space, and then check for geometric proximity, using any of a number of metrics. As
clusters develop, the trick is how to define distance between multiple objects. Some concept of
cluster "center" must be applied. Nevertheless, cluster analysis is a mature science.

For the most part, clustering algorithms fall into one of the three categories:

• Tree-based clustering. In tree-based clustering, data are broken into groups, by successive
branching on variables with distributions that demand partitioning. The end result is a tree graph
such that all branches at a node point toward a sub tree with significantly different behavior
from the node variable.

• K-means clustering. In K-means clustering, an algorithm moves objects in and out of groups
(clusters) with the goal of maximizing the Analysis of Variance (ANOVA) significance. That is,
there should be similar variance within each cluster but dissimilar variance between clusters.
This method relies on the analyst’s ability to specify the number of clusters in advance.

• Two-way joining. In two-way joining, clusters are formed for "cases" and variables at the same
time. This assumes that there are multiple cases (e.g. patients in a clinic) for each variable.

In our analysis, we opted for a combination of tree-based clustering and K-means clustering.  Our
strategy thereby afforded us both robust control over and review of the clustering process.  See
[R71], [H75], or [G99] for a reference on cluster analysis.
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The best way to understand cluster analysis is through analogy. Suppose someone asks you what
your "typical" day is like. Specifically, what time do you get out of bed in the morning? Your
immediate reply might be "weekday or weekend?” knowing that your habits differ on these two
types of days; it would be meaningless to consider averages across these days. For if you wake at
7:00 am on weekdays, but sleep in until 10:00 am on weekends, then your average time of rising is
8:30 am. Clearly this statistic is misleading, because there may be virtually no day on which you get
up at 8:30 am. Although this fulfills the notion of "typical" in some average sense it lacks a sense of
frequency or modality. By contrast, the average rising time of a weekday has meaning in the
"typical" sense, since rising times are fairly tightly grouped around 7:00 am on weekdays.
Moreover, we have a strong chance of finding a typical weekday (historically speaking) in which
you rose very close to 7:00 am.  Overall, a major purpose of cluster analysis is to insure that within
each cluster, data are actually present close to the mean, and with reasonable frequency.  

The purpose of the cluster analysis across NAS feature vectors is to determine whether certain
variables that should be split into multiple groups with similar behavior. In our rise-and-shine
analogy, the cluster analysis would first detect the weekday-vs.-weekend difference and split out
two groups before even asking the question what is typical. Moreover, the analysis might even
identify a third category, called "vacation days" with highly erratic rising times. It may seem
reasonable to add the vacation days to the weekend category, but the high variance might
compromise the integrity of the weekend data set. The purpose of the cluster analysis is to
determine from an objective, scientific standpoint whether or not this is a reasonable thing to do.

5.1 Data Associated with September 11, 2001
Data in this study are split distinctly before and after September 11, 2001. . It is well known that air
traffic volumes precipitously dropped immediately after Sept. 11  (recall Figure 1). Clearly, Sept.
11 – and a few days thereafter – should be treated as a special event. What about the response and
explanatory behavior of the other variables after September 11? Are the days after September 11
just low-volume instances of days prior to September 11? The answers to these questions help us
determine whether we should restrict our attention to pre-September 11 data or to span over it.

Principal Component Analysis (PCA) is a statistical procedure that transforms a number of
(possibly) correlated variables into a smaller number of uncorrelated variables called principal
components. We adopted a form of PCA known as oblique PCA and centroid-based clustering
[A73, H76] (available within SAS, S, and other statistical software). With these methods, we found
that most of the candidate NAS feature vector variables contribute a similar variation in the pre- and
post-September 11 datasets. Nevertheless, we also found some unique differences in the two
datasets that require more detailed investigation outside the scope of this effort. So to be cautious,
we proceeded only with the pre-September 11 dataset to obtain optimal clusters.

Even though most of the variables in the original dataset have similar effect toward explaining the
observed variation in the pre- and post-September 11 data, some of the selected model variables had
markedly different behavior in the pre and post era. For example, the scheduling groups of variables
were quite different in the two periods. These differences were clearly visible in a tour of the data
obtained from the dynamic graphics package X-gobi. Thus, in view of these strong differences we
found it best to divide the data into pre and post September 11. A complete understanding of the
differences between these two datasets remains an open research question outside the scope of the
current effort.

5.2 Cluster Analysis Process and Results
A total of 65 variables were considered in the cluster analysis process.  Although some of these
variables were excluded from the statistical analysis survey presented in Chapter 4, they all are
included in the cluster analysis to identify the most dominant variables for describing the optimal
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NAS feature vector.  Table 9 presents the variables included in the analysis, and Figure 141  shows
a relative comparison of the variable ranges.

Table 9.  Descriptive information about the variables considered in cluster analysis.

Number Variable Variable Description

1 Date Dates from January 1, 2000 to May 31, 2002

2 OAG_DEP_CT Daily OAG Scheduled Departure Count

3 OAG_ARR_CT Daily OAG Scheduled Arrival Count

4 DEP_CNT Daily Departure Count

5 ARR_CNT Daily Arrival Count

6 DEP_CANCEL Daily Departure Cancellations Count

7 ARR_CANCEL Daily Arrival Cancellations Count

8 OGATE_DELC Daily Count of OAG-Based Gate Delays

9 GDEP_ONTIM Average Percent OAG-Based On Time Gate Departures (per quarter hour)

10 OARPT_DEPC Daily Count of OAG-Based Airport Departure Delays

11 ADEP_ONTIM Average Percent OAG-Based On time Airport Departures (per quarter hour)

12 ODELARR_C Daily Count of OAG-Based Arrival Delays

13 GARR_ONTIM Average Percent OAG-Based On Time Arrivals (per quarter hour)

14 OGATE_DEL Daily Total OAG-Based Gate Delay (minutes)

15 DELAY_TO Daily Total Taxi Out Delay (minutes)

16 O_ARPT_DEP Daily Total OAG-Based Airport Departure Delay (minutes)

17 DEL_AIR Daily Total Airborne Delay (minutes)

18 DEL_TI Daily Total Taxi In Delay (minutes)

19 BLOCK_CNT Daily Count Of Flights With Block Delay

20 Block_DEL Daily Total Block Delay (minutes)

21 O_DEL_ARR Daily Total OAG-Based Arrival Delay (minutes)

22 WND_SPEED Maximum Reported Wind Speed (Knots)

23 AVGGATEDEL Average Daily Gate Delay (minutes)

24 AVGDEL_TO Average Daily Taxi Out Delay (minutes)

25 AVG_DEL_TI Average Daily Taxi In Delay (minutes)

26 AVGDEL_AIR Average Daily Airborne Delay (minutes)

27 AVG_BLOCK Average Daily Block Delay (minutes)

28 AVGARPTDEP Average Daily Airport Departure Delay (minutes)

29 AVGODELARR Average Daily OAG-Based Airport Arrival Delay (Gate In) (minutes)

30 CEILING Average Daily Ceiling

31 VISIBLE Average Daily Visibility

32 IFR Daily Percentage of quarter hours in IFR conditions

33 VFR Daily Percentage of quarter hours in VFR conditions

34 AVG_ARR_RATE Average Hourly AAR over all airports throughout the day

35 Avg_ARPT_PER Average over 21 ASPM Airports of Daily Airport Performance Score

36 Min_ARPT_PER Minimum over 21 ASPM Airports of Daily Airport Performance Score

37 Max_ARPT_PER Maximum over 21 ASPM Airports of Daily Airport Performance Score

38 SD_ARPT_PER Std. Deviation over 21 ASPM Airports of Daily Airport Performance Score
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39 Var_ARPT_PER Variance over 21 ASPM Airports of Daily Airport Performance Score

40 GDPs Daily GDP Count

41 GDP_Length Length of GDP (minutes)

42 GDP_Delay Total Delay attributed to the GDP (minutes)

43 WxRel_MIT Daily Count of Weather-Related MIT Restrictions

44 Volume_MIT Daily Count of Volume-Related MIT Restrictions

45 Total_MIT Daily Count of Total MIT Restrictions

46 Total_Ops Total Operation Count From OPSNET

47 Total_Delays Total Delay Count From OPSNET

48 Dep_Del Total Departure Delay Count From OPSNET

49 Arr_Del Total Arrival Delay Count From OPSNET

50 Enroute_Del Total En route Delay Count From OPSNET

51 TMS_Del Total Traffic Management Initiative Delay Count From OPSNET

52 AirCarrier_Del Total Air Carrier Delay Count From OPSNET

53 AirTaxi_Del Total Air Taxi Delay Count From OPSNET

54 GA_Del Total General Aviation Delay Count From OPSNET

55 Military_Del Total Military Delay Count From OPSNET

56 Wx_Del Total Weather Related Delay Count From OPSNET

57 TermVol_Del Total Terminal Volume Related Delay Count From OPSNET

58 CenterVol_Del Total Center Volume Related Delay Count From OPSNET

59 Equip_Del Total Equipment Related Delay Count From OPSNET

60 Runway_Del Total Runway Related Delay Count From OPSNET

61 Other_Del
Total Other Delay Count From OPSNET (includes Noise Abatement, Flight
Check, Fire, Bomb Threat, VIP Movement, Air Show, Aircraft Emergency,
Stuck Mike, External Radio Frequency Interference, etc.)

62 DelsPer1000Ops Delays per Thousand Operations from OPSNET

63 AvgDel_Min Avg minutes of Delay from OPSNET

64 TotDel_Min Total Minutes of Delay from OPSNET

65 PercOpsDelayed Percentage of Operations Delayed from OPSNET
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In both the optimal feature vector analysis and the types-of-day analysis, a two-phase cluster
analysis was pursued.

The process for the identifying the optimal NAS feature vector is described next.  The candidate 65
variables were clustered (bundled) by similar statistical behavior to reduce the variables (Table 9) to
a more intuitive, manageable set. This set of key variables defines what we call the “optimal” NAS
feature vector.  The clustering procedure used an interactive combination of a clustering algorithm
and subjective review for integrity of interim results.  Figure 141  depicts the process.

The first step in Figure 141 is an oblique PCA clustering algorithm (from SAS), which forms an
initial clustering. The algorithm was run with an initial setting of the maximum number of clusters.
Each cluster was reviewed for uniformity and membership count. In general, a clustering algorithm
will return the maximum number of clusters, because its internal objective function can always be
reduced by creating one or more singleton clusters. So, the algorithm was run again with the
maximum number of clusters decremented by 1.  This cycle, Loop 1 in Figure 141, was repeated
until cluster memberships were deemed reasonable. (A good rule of thumb is that each cluster
should have at least 2% membership.)

Figure 141 .  Cluster Analysis flow chart (note: Loop 2 was planned for in our analysis
but it was not required, that is, the content was determined to be acceptable).

Once the cluster membership counts were acceptable, the clusters were reviewed for content.  The
algorithm clustered variables based on similar statistical behavior (variance). Intuitive knowledge of
NAS behavior and variable nuances was applied to ensure that the algorithmic groupings are
consistent with known, or suspected, relationships.  For instance, one would expect to see daily
departure counts and arrival counts to be in the same cluster.  

If content of one or more clusters is unacceptable, then the process would enter Loop 2. There are
two options: to override the clustering algorithm with subjective bias – that is, force certain
groupings – or to appeal to another type of clustering algorithm. Fortunately, our process never had
to enter Loop 2.

5.2.1 Phase I: Variable Clustering to Determine an Optimal NAS Feature Vector
We next step through the cluster analysis process that determines the optimal NAS feature vector.
While results are summarized in this section, detailed notes taken during the clustering process are
given in Appendix D.

In order to determine the optimal NAS feature vector, Loop 1 was executed six times.  With each
iteration, we decided whether certain variables should be eliminated.. The criteria for potential
elimination of a variable v were:

NAS Historical Data

Clustering
Algorithm

Review
Cluster Sizes

M = Max. Number of Clusters

Acceptable
Sizes?

Yes

No

M = M-1

Loop 1

Review Cluster
Contents Acceptable

Content?

Yes
No

Loop 2

Cluster with
Subjective Bias

Final Cluster
Representatives
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• v is redundant, i.e., there exists another variable w with an unusually strong correlation with
v (hence there is no need for both v and w);

• v is clearly "homeless", meaning that it has an extremely weak association with all of the
clusters;

• v is essentially constant over time.

We begin with easily identified, simple correlations and eliminate variables that illustrate clear
redundancies.  Variables v32 and v33 (average conditions of IFR and VFR) have a perfect
correlation (correlation coefficient = 1).  By definition, these variables sum to 1 on each day.  Only
one is needed, so we retain only the IFR variable.  Next, Figure 142 shows that the variables
"Volume-related MIT" and “Total MIT Restrictions” are highly correlated. One of these could be
eliminated, so we arbitrarily chose the former.

Figure 142 .  A scatter plot8 shows that Volume-related MIT
and Total MIT restrictions are highly correlated.

Unfortunately, none of the weather variables by itself proved to be a prominent variable in any of
the variable clusters. Two of the weather variables, “Average Daily Visibility” and “Maximum
Reported Wind Speed”, fell into a cluster with the GDP variables. Also within this cluster were
average hourly airport acceptance rates, and daily count of weather-related MIT restrictions. This
assembly makes sense, since the formal issuance of delay by the FAA is usually a reaction to
adverse weather conditions. But the variable “Cloud Ceilings” was completely eliminated due to
weak association with any of the bundles.  Its lack of correlation with Maximum Reported Wind
Speed and Average Daily Visibility, for instance, is demonstrated in, Figure 143 .

                                                
8 Note:  Scatter plots use blue and red data points to indicate when the data is statistically significant.  The blue
entries represent two variables that had a p-value in the correlation matrix less than 0.05, while the red entries
have p-value greater or equal to 0.05.  The p-value is the probability of observing this correlation if the actual
correlation was really 0.  Essentially, that is saying that a p-value below 0.05 means that there is a very low
probability that the observed correlation occurred by chance.  

The r value
identifies the
correlation
coefficient (1
is identically
correlated)
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Figure 143.  Low r values indicate little or no correlation with Maximum
Reported Wind Speed and Average Daily Visibility.

Another cluster consisted of cancellation statistics and two of the airport performance scores. Direct
examination of these variables revealed a strong association. But the latter two were eliminated
because they are virtually constant over time, as seen in Figure 144, and therefore add no
descriptive value to a description of the NAS. This left Cluster 6 with purely cancellation statistics.

Figure 144.  The mean and minimum airport performance scores are almost constant and thus
do not reveal any meaningful information for the cluster analysis.

We next eliminated the IFR variable from the study on the grounds that is does not really belong in
any of the bundles (weak association) and that it would add no value to NAS description as its own
bundle. It also lacked correlation with the cloud ceilings variable, which was also eliminated.

Cluster 7 was mostly center and volume delays. Equipment and runway delays (v62 and v63)
showed a very weak association, but were eliminated since a proper cluster membership could not
be found for them.

In all, we eliminated 8 of the 65 variables.  Table 10  documents the final cluster analysis results.

Table 10.   All Cluster Memberships of the variables considered in cluster analysis.

No. Variable Cluster Cluster Units 1-R2 Time Format

Maximum

Minimum
Mean

Standard Deviation
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Ranking Ratio

1 DATE n/a n/a mm-dd-yyyy n/a n/a

2 OAG_DEP_CT 4 3 Count 0.34 Local Time (by Airport)

3 OAG_ARR_CT 4 4 Count 0.34 Local Time (by Airport)

4 DEP_CNT 4 2 Count 0.27 Local Time (by Airport)

5 ARR_CNT 4 1 Count 0.25 Local Time (by Airport)

6 DEP_CANCEL 6 2 Count 0.2 Local Time (by Airport)

7 ARR_CANCEL 6 1 Count 0.19 Local Time (by Airport)

8 OGATE_DELC 1 1 Count 0.07 Local Time (by Airport)

9 GDEP_ONTIM 3 2 % 0.05 Local Time (by Airport)

10 OARPT_DEPC 1 5 Count 0.17 Local Time (by Airport)

11 ADEP_ONTIM 3 4 % 0.12 Local Time (by Airport)

12 ODELARR_C 1 4 Count 0.16 Local Time (by Airport)

13 GARR_ONTIM 3 6 % 0.14 Local Time (by Airport)

14 OGATE_DEL 3 5 Minutes 0.12 Local Time (by Airport)

15 DELAY_TO 4 5 Minutes 0.52 Local Time (by Airport)

16 O_ARPT_DEP 3 1 Minutes 0.03 Local Time (by Airport)

17 DEL_AIR 4 6 Minutes 0.55 Local Time (by Airport)

18 DEL_TI 4 9 Minutes 0.93 Local Time (by Airport)

19 BLOCK_CNT 4 7 Count 0.57 Local Time (by Airport)

20 Block_DEL 8 2 Minutes 0.39 Local Time (by Airport)

21 O_DEL_ARR 3 3 Minutes 0.1 Local Time (by Airport)

22 WND_SPEED 8 11 Knots 0.97 Local Time (by Airport)

23 AVGGATEDEL 1 6 Minutes 0.18 Local Time (by Airport)

24 AVGDEL_TO 8 7 Minutes 0.71 Local Time (by Airport)

25 AVG_DEL_TI 3 7 Minutes 0.77 Local Time (by Airport)

26 AVGDEL_AIR 8 6 Minutes 0.68 Local Time (by Airport)

27 AVG_BLOCK 8 1 Minutes 0.38 Local Time (by Airport)

28 AVGARPTDEP 1 2 Minutes 0.07 Local Time (by Airport)

29 AVGODELARR 1 3 Minutes 0.13 Local Time (by Airport)

30 CEILING eliminated n/a Hundreds of Feet  n/a Local Time (by Airport)

31 VISIBLE 8 8 Miles 0.79 Local Time (by Airport)

32 IFR eliminated n/a %  n/a Local Time (by Airport)

33 VFR eliminated n/a % n/a Local Time (by Airport)

34 AVG_ARR_RATE 8 9 Flights per Hour 0.82 Local Time (by Airport)

35 Avg_ARPT_PER eliminated n/a Score (out of 100) n/a Local Time (by Airport)

36 Min_ARPT_PER eliminated n/a Score (out of 100)  n/a Local Time (by Airport)

37 Max_ARPT_PER 5 3 Score (out of 100) 0.08 Local Time (by Airport)

38 SD_ARPT_PER 5 1 Score (out of 100) 0.02 Local Time (by Airport)

39 Var_ARPT_PER 5 2 Score (out of 100) 0.03 Local Time (by Airport)

40 GDPs 8 3 Count 0.47 Zulu (FSM Day)

41 GDP_Length 8 4 Minutes 0.48 Zulu (FSM Day)

42 GDP_Delay 8 5 Minutes 0.52 Zulu (FSM Day)
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43 WxRel_MIT 8 10 Count 0.89 Zulu (GMT)

44 Volume_MIT eliminated n/a Count  n/a Zulu (GMT)

45 Total_MIT 4 8 Count 0.72 Zulu (GMT)

46 Total_Ops 7 1 Count 0.42  UTC

47 Total_Delays 2 1 Count 0.03  UTC

48 Dep_Del 2 9 Count 0.44  UTC

49 Arr_Del 2 11 Count 0.59  UTC

50 Enroute_Del 2 14 Count 0.99  UTC

51 TMS_Del 2 7 Count 0.26  UTC

52 AirCarrier_Del 2 4 Count 0.05  UTC

53 AirTaxi_Del 2 8 Count 0.3  UTC

54 GA_Del 2 12 Count 0.62  UTC

55 Military_Del 2 13 Count 0.97  UTC

56 Wx_Del 2 5 Count 0.07  UTC

57 TermVol_Del 7 2 Count 0.53  UTC

58 CenterVol_Del 7 4 Count 0.68  UTC

59 Equip_Del eliminated n/a Count n/a  UTC

60 Runway_Del eliminated n/a Count n/a  UTC

61 Other_Del 7 3 Count 0.62  UTC

62 DelsPer1000Ops 2 2 Count 0.03  UTC

63 AvgDel_Min 2 10 Minutes 0.54  UTC

64 TotDel_Min 2 6 Minutes 0.08  UTC
65 PercOpsDelayed 2 3 % 0.03  UTC

Once the cluster content stabilized and met with the analyst’s approval, a representative from each
cluster was chosen. Since the algorithm outputs an index for each variable – which represents the
strength of association with its cluster – the variable with the strongest association was chosen as
the representative. Nevertheless, another variable may be chosen instead for subjective reasons.  In
one instance we chose "GDP minutes" (total ground delay issued in GDPs) as the representative,
even though it was the fifth strongest variable. It was chosen over both "GDP count" (number of
GDPs implemented) and "GDP length" (hours of GDP duration summed over all GDPs), because
we knew that "GDP minutes" implicitly contains the other two, and is a less discrete indicator of
demand-capacity imbalances. (A more discrete variable generally produces a multi-modal
distribution, which would tend to cluster the vectors artificially in the next round of analysis.)  In all,
we overruled the default selection in just this one case.

The clustering process culminated in eight variable bundles and their representatives, which are
listed in Table 11 .  Further details on each of the clusters are presented in Table 12  through Table
19.  

Table 11.  Optimal Variable Cluster Set.

Cluster Cluster Name Prominent Variable
within Cluster

Members
in Cluster

1 Gate Delays Daily Count of OAG-Based Gate Delays 6
2 Overall Delays Total Delay Count From OPSNET 14
3 On-time Performance Daily Total OAG-Based Airport Departure

Delay (minutes)
7

4 Traffic Volume Daily Arrival Count 9
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5 Airport Performance Metric Std Dev of Airport Performance Score (21
ASPM Airports)

3

6 Cancellations Daily Arrival Cancellations Count 2
7 Volume-related Delays Total Operation Count From OPSNET 4
8 Weather and GDPs Total Delay attributed to GDPs (minutes) 11

Table 12.   The 6 Variables that form the “Gate Delays” Cluster.

Variable Variable Description Ranking

v8 Daily Count of OAG-Based Gate Delays 1

v28 Average Daily Airport Departure Delay (minutes) 2

v29 Average Daily OAG-Based Airport Arrival Delay (Gate In) (minutes) 3

v12 Daily Count of OAG-Based Arrival Delays 4

v10 Daily Count of OAG-Based Airport Departure Delays 5

v23 Average Daily Gate Delay (minutes) 6

Table 13.   The 14 Variables that form the “Overall Delays” Cluster.

Variable Variable Description Ranking

v47 Total Delay Count From OPSNET 1

v62 Delays per Thousand Operations from OPSNET 2
v65 Percentage of Operations Delayed from OPSNET 3

v52 Total Air Carrier Delay Count From OPSNET 4

v56 Total Weather Related Delay Count From OPSNET 5

v64 Total Minutes of Delay from OPSNET 6

v51 Total Traffic Management Initiative Delay Count From OPSNET 7

v53 Total Air Taxi Delay Count From OPSNET 8

v48 Total Departure Delay Count From OPSNET 9

v63 Avg minutes of Delay from OPSNET 10

v49 Total Arrival Delay Count From OPSNET 11

v54 Total General Aviation Delay Count From OPSNET 12

v55 Total Military Delay Count From OPSNET 13

v50 Total En route Delay Count From OPSNET 14

Table 14.   The 7 Variables that form the “On-Time Performance” Cluster.

Variable Variable Description Ranking

v16 Daily Total OAG-Based Airport Departure Delay (minutes) 1

v9 Average % OAG-Based On Time Gate Departures (per 1/4 hour) 2

v21 Daily Total OAG-Based Arrival Delay (minutes) 3

v11 Average % OAG-Based On time Airport Departures (per _ hour) 4

v14 Daily Total OAG-Based Gate Delay (minutes) 5

v13 Average % OAG-Based On Time Arrivals (per _ hour) 6

v25 Average Daily Taxi In Delay (minutes) 7

Table 15.   The 9 Variables that form the “Traffic Volume” Cluster.

Variable Variable Description Ranking
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v5 Daily Arrival Count 1

v4 Daily Departure Count 2

v2 Daily OAG Scheduled Departure Count 3

v3 Daily OAG Scheduled Arrival Count 4

v15 Daily Total Taxi Out Delay (minutes) 5

v17 Daily Total Airborne Delay (minutes) 6

v19 Daily Count Of Flights With Block Delay 7

v45 Daily Count of Total MIT Restrictions 8

v18 Daily Total Taxi In Delay (minutes) 9

Table 16.   The 3 Variables that form the “Airport Performance Metric” Cluster.

Variable Variable Description Ranking

v38 Std. Dev. over 21 ASPM Airports of Daily Airport Performance Score 1

v39 Variance over 21 ASPM Airports of Daily Airport Performance Score 2

v37 Maximum over 21 ASPM Airports of Daily Airport Performance Score 3

Table 17.   The 2 Variables that form the “Cancellations” Cluster.

Variable Variable Description Ranking

v7 Daily Arrival Cancellations Count 1

v6 Daily Departure Cancellations Count 2

Table 18.   The 4 Variables that form the “Volume Related Delays” Cluster.

Variable Variable Description Ranking

v46 Total Operation Count From OPSNET 1

v57 Total Terminal Volume Related Delay Count From OPSNET 2

v61 Total Other Delay Count From OPSNET 3

v58 Total Center Volume Related Delay Count From OPSNET 4

Table 19.   The 11 Variables that form the “Weather and GDP” Cluster.

Variable Variable Description Ranking

27 Average Daily Block Delay (minutes) 1

20 Daily Total Block Delay (minutes) 2

40 Daily GDP Count 3

41 Length of GDP (minutes) 4

42 Total Delay attributed to the GDP (minutes) 5

26 Average Daily Airborne Delay (minutes) 6

24 Average Daily Taxi Out Delay (minutes) 7

31 Average Daily Visibility 8

34 Average Hourly AAR over all airports throughout the day 9

43 Daily Count of Weather-Related MIT Restrictions 10

22 Maximum Reported Wind Speed (Knots) 11

Each cluster was given a name to convey the major theme of the comprising variables.   For each
day, the eight corresponding aggregate statistics were compiled, with the intent of performing a
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Phase II cluster analysis to determine the different “types” of days in the NAS.  For instance, the
feature vector for February 11, 2001 is shown in Figure 145 .

Gate
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Figure 145.   Feature vector for February 11, 2001.

5.2.2 Phase II: Clustering to determine the Types of Days in the NAS
In Phase II, a cluster analysis was performed on the NAS feature vectors passed from Phase I. The
objective in Phase II was to classify the NAS feature vectors for each day Jan. 2000 through Sept.
10, 2001 into groups that naturally described different types of days in the NAS.  For instance, if
one of the variables were overwhelmingly bimodal, then the algorithm would tend to break the
vectors into two groups corresponding to the two (implicit) distributions given by that variable.
Without this crucial step, the multi-modal nature of the NAS feature vector components might
render the type-of-day classification meaningless.

In theory, a clustering algorithm could break the feature vectors (data points) into any number of
clusters. Each cluster would represent a different type of day in the NAS, and within each cluster,
we could define typical and atypical days. But, on an intuitive level, it seemed that the number of
types of days in the NAS should be relatively small. For instance, a natural decomposition might be
six clusters, resulting from three levels of traffic volume, each with two possible levels of weather
conditions.

This time, we used a centroid-based (K-means) clustering algorithm. The overall iterative process
was the same as the variable bundling process (Figure 141), with two exceptions: (1) the data
points are days in the calendar year rather than NAS feature vector variables, and (2) no data points
were eliminated.  Appendix E provides an annotated version of the intermediate results for the type
of day clustering process.

First, we performed a relaxed cluster analysis, meaning that we did not interject any subjective
biases into the algorithm with a generous upper bound on the maximum number of clusters (20).
This resulted in 20 clusters (as we would expect) but only 10 of these had significant membership –
many of the other clusters had only 1 or 2 data points in them. So, we ran the algorithm again with
the maximum number of clusters set to 10. This drove the singletons back into the major clusters.
This time, only 7 of the 10 resulting clusters had significant membership, so we ran the algorithm
one more time with the maximum cluster value set at 7.  The resulting 7 clusters had memberships
of 62, 183, 104, 68, 16, 182, and 4. Each of these is considered significant (at least 2% of the
number of data points). The low membership in cluster 7 was a bit unsettling, but examination
revealed that these days were statistical outliers, which are often grouped together in a cluster
analysis. This means that there were really six major clusters.

Satisfied with the resulting cluster membership counts, we proceeded to investigate which, if any, of
the variables had been the primary determinant in dividing the data. (If there were no recognizable
pattern, then it would be hard to characterize the clusters as to which types of days they represent.)
We used the X-gobi software tool to visually examine the data and clusters from multiple
dimensions. In particular, we plotted each of the eight variables against the cluster numbers. A
typical scatter plot is shown in Figure 146 . Each point (m,n) represents a day belonging to cluster
n, which had m hours of GDPs run that day. The data points are of course gathered along their
respective cluster lines, but there is no recognizable relationship between cluster number and GDP
hours.
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Figure 146.   Plot of GDP length vs. Cluster.

In contrast, we found one variable that had an almost perfect relationship with cluster membership:
"GDP minutes", which is the number of minutes of ground delay assigned by the FAA during a
ground delay program.  Each cluster was almost completely characterized by the number of GDP
minutes spanned by its members, as seen in Figure 147 .
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Figure 147.   Plot of GDP minutes vs. Cluster.

Aside from a very slight overlap between ranges, the GDP minutes range increases as the cluster
number increases. (The notable exception to this association is Cluster 6, which we will discuss
shortly.) That is, in terms of the types of days in the NAS, we can now make the following
distinction (ordered by GDP minutes):

• All days with NAS Day Type 1 have: 0 < GDP minutes <   17,302
• All days with NAS Day Type 6 have: 0 < GDP minutes <   16,236
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• All days with NAS Day Type 2 have:  16,314  < GDP minutes <   40,142
• All days with NAS Day Type 3 have:  40,257  < GDP minutes <   67,269
• All days with NAS Day Type 4 have:  67,139  < GDP minutes <   96,931
• All days with NAS Day Type 5 have:100,020  < GDP minutes < 130,460
• All days with NAS Day Type 7 have:142,770  < GDP minutes < 182,677

Cluster 1 and Cluster 6 clearly share the same GDP minutes range.  Cluster 1 overlaps with cluster
2 by just 988 minutes; Cluster 3 overlaps with cluster by just 130 minutes; the remaining are non-
overlapping.

Statistically, GDP minutes are the single most important variable to consider of the eight
representatives when lumping days by similar characteristics. Intuitively, this means that there are
six types of days in the NAS (seven, if one is willing to count the outliers in Cluster 7):

• Type of NAS Day 1:  Very low GDP level, with low operations count (cluster 1)
• Type of NAS Day 6:  Very low GDP level, with high operations count, (cluster 6)
• Type of NAS Day 2:  Low GDP level (cluster 2)
• Type of NAS Day 3:  Medium GDP level (cluster 3)
• Type of NAS Day 4:  High GDP level (cluster 4)
• Type of NAS Day 5:  Very High GDP level (cluster 5)

Variable v8, gate delays, exhibited a slight relationship with cluster number, but not nearly as strong
as GDP minutes. The same was true for GDP count.

Next, we sought to distinguish the two types of low GDP level days. In particular, why did the
cluster algorithm choose to break Cluster 1 into two clusters (1 and 6)?  Variable v46, which is the
number of total operations in the NAS for the day, exhibits a bimodal behavior, as illustrated in
Figure 148. The algorithm found a more efficient grouping by breaking this cluster into two
groups. (A sub-optimal solution would have been to establish 7 levels of GDP minutes, each with a
unique range.) We had already seen the bimodal behavior in Section 4.1.2, where we directly
examined arrival and departure counts. Weekdays (Monday through Friday) tend to have more
traffic than weekends (Saturday or Sunday).
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Figure 148.   Histogram of total operations count for Jan. 1, 2000 through Sept. 10, 2001.

Traffic volume is a secondary factor in characterizing what type of day it is in the NAS, next to
GDP minutes. This is made clear by Figure 149 . This is a multi-dimensional projection of the data

Note the bimodal distribution,
attributable primarily to
weekday versus weekend
traffic levels.
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points. The crosses indicate the days with low levels of GDP minutes (Clusters 1 and 6); the other
data points are members of the other five clusters. Note that this group is clearly split into two
groups by the bimodal nature of the total operations variable (x46).

Figure 149.   Cluster of low level of GDP minutes (+ symbols).

Having established the six type-of-day clusters, we were able to rank the days within each cluster
according to how typical they were, using proximity to the center of the cluster as the criterion. That
is, let 

()128,,...,=
 be the vector created by setting 

k

 equal to the mean of the kth variable of
the NAS feature vector, taken over the vectors in a fixed cluster.  Mean vector  is the center of the
cluster mass. Then the vector closest to  was considered to be the most typical day in the cluster.
Proximity was defined using a Euclidean-based metric normalized for variance. That is, let()128,,...,vvvv=

and 
()128,,...,wwww=

 be two eight-dimensional vectors. The weighted distance
between them is defined as ()()2821,kkkkvwdvw=−=∑

where 
2k

 is the variance of the kth variable.  Without this normalization, proximity would be
skewed toward the variables with the larger values.

Table 20 presents the mean vector for each type-of-day cluster and Table 21 presents the three
closest (most typical) days for each type-of-day cluster. The center of the Type 1 type-day cluster is
given by row 1 in Table 20 . Appendix H presents the final rankings for the different types of days
in the NAS.

Table 20.  Data for the Mean Vector for each Cluster.

Variable
Cluster Count v8 v47 v16 v5 v38 v7 v46 v42

1 62 3737 655 14161 19932 5.722 526.9 46689 6568
2 183 4801 1136 14150 21524 5.455 539.2 54546 28119
3 104 5508 1075 13762 21985 5.229 675.5 54105 51053
4 68 6774 1136 12307 21822 5.145 918.1 54744 79974
5 16 6958 1280 12254 22092 5.183 961.4 56728 112424
6 182 4053 1222 14973 21512 5.801 434.1 56850 5355
7 4 8040 1264 10230 20978 5.339 1008.2 53374 159973
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Table 21.   Most Typical Day in each Cluster.

Type of
Day Dates Distances

Cluster 1st 2nd 3rd 1st 2nd 3rd

1 02-11-01 03-12-00 01-07-01 1443 1799 2643

2 08-03-01 09-05-00 02-17-00 1572 1596 2222

3 10-04-00 06-20-00 06-13-01 2319 2475 3741

4 01-15-01 02-11-00 03-15-01 2930 2935 4103

5 05-22-01 06-16-00 10-27-00 3047 4342 4855

6 07-12-01 05-02-01 03-31-00 1949 2259 2489

7 02-25-01 07-28-00 11-26-00 7035 7780 18252
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Figure 150  shows a 2-dimensional representation of the metric being applied within a cluster (see
Cluster 2). Figure 150  also shows how the metric can be used to measure the distance between a
cluster center (c3) and the center of all clusters (U). Within each cluster, the days can then be ranked
according to proximity with the center of the cluster.  The day whose vector is closest to the center
of the cluster is considered the most "typical" day in that cluster.

Figure 150.  The Euclidean metric is used to measure the distance of a day-vector
(point) from the center of its cluster (e.g., Cluster 2) or to measure the distance of a
cluster from the center of all clusters (U).

5.3 Interpretation of Results
The results of the clustering algorithm showed that variables v42 and v46 were the most critical in
separating the day vectors into clusters. We investigate why this is and the range of conclusions we
are entitled to draw.

In scatter plot format, Figure 151 shows the clustering of data points by variables v42 and v46.
This is a projection of the 8-dimensional day cluster data points onto the v42-v46 plane. Each point
represents one day; the vertical coordinate is the number of operations for that day, while the
horizontal coordinate is the number of number of GDP minutes. The points are marked and colored
by cluster number.

In Figure 151 , note that the points on the far left (with low or zero GDP minutes) are divided into
an upper group and a lower group, clusters 6 and 1, respectively. This is the effect of the bimodal
distribution of v42, which we have already seen. The separation is designed to alleviate the debate of
which of the two modes (low operations or high operations) is more typical, by breaking them into
two clusters, thus making it a moot point.

The center of each cluster
represents the type of day
that is most typical of the
type of day represented by
the cluster.
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Figure 151.  Scatter plot of GDP Delay Minutes vs Operations Count.

The objective of the clustering algorithm is to create a fixed number of clusters such that the
variance within each cluster is minimized, while the variance between clusters is maximized.
Intuitively, this is the same as identifying concentrations of data in multi-dimensional space.
Sweeping left to right in Figure 151, the breakdown by GDP minutes forms vertical lines of
separation.  These separations have been made to reduce the variance in the GDP minutes (v42)
distribution. In the scatter plot, the horizontal separation of the data seems somewhat arbitrary. This
is because the frequency of the points with respect to the horizontal axis is obscured. Consider the
frequency distribution of the GDP minutes variable, which is shown in Figure 152.  The
distribution is concave, and heavily skewed to the left. This is the same as saying that in the scatter
plot, the number of data points drops off as we move from left to right. The variance of this type of
distribution is much greater than that of a classic bell-shaped distribution of equal mass. (In fact, the
only way one could rearrange the same mass to have more variance is to evenly divide the mass
between the two extreme points.) The intuitive justification for addressing variables with this type of
distribution is that they make it the most difficult to answer the question of what is typical. That is,
the mean is very far from the mode. (We noted that the other variables in the v42 bundle tended to
have similar shapes.)

Cluster 1

Cluster 6 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Note:
Cluster 7 points
are very far off
to the right of
this graph.
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Figure 152.  Histogram illustrating the relative cluster locations.

A natural question is why the algorithm didn't continue making vertical separations of clusters 2, 3,
4, and 5? If one were to cluster the points solely on the basis of this scatter plot, a strict separation
of the points into an upper group and a lower group seems the most natural. First, as we have
pointed out, the greatest payoff is breaking up the horizontal variance, which is not immediately
obvious in the scatter plot. A closer examination reveals that the frequency of points drops off as we
move from left to right. The magnitude of this drop is not fully appreciated because points on the
left are sitting on top of other ones. If one were to draw the points up out of the v42-v46 plane by
plotting a third dimension (one of the other variables), then the high variance in v42 would become
more clear. We used the X-gobi software to do this, which requires continuous rotation of data to
be visually effective. Second, note that the vertical separation of points in the scatter plot is less
pronounced on the right (in Clusters 4 and 5) than it is on the left (Clusters 1 and 6). Overall, the
data forms a horseshoe, and the algorithm used an optimization routine to decide where it is no
longer profitable to form vertical separations.

The separation of day vectors by variables v42 and v46 does not mean that either of these is a more
important indication of the state of the NAS than the other six representative variables. It just means
that these are the most problematic when trying to determine what a typical day is like. The issue of
which of two days respect is more typical breaks down between clusters, but is preserved within
clusters.

The end result of this separation process is a set of clusters that are distributed around their
geometric centers, in as many dimensions as possible. Confirmation is provided in the distributions
shown in Figure 153  and Figure 154 .  

Day vectors are broken into
clusters by the clustering algorithm
according to level of FAA-assigned
ground delay minutes. This
minimizes variance within each
cluster and maximizes variance
between clusters.
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Figure 153.   Cluster Variances for 6 Types of Days.

Figure 154.   Cluster Variance for the outlier days cluster.

Each of these shows the frequency distribution of cluster member distance from center of cluster.
The distributions are bell-shaped, which is directly in line with our intuitive notion of clustering.
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(The fact that some seem unduly flat is a manifestation of the vertical axis having been stretched to a
common size for all clusters.)

We emphasize that the results of the cluster analysis caution us against making comparisons across
clusters as to whether one day is more typical that another. Strictly speaking, the point is moot.
However, if really pressed to answer this question, one could consider using the cluster
memberships as a guide: the cluster with the highest membership is, in some sense, the most typical,
and within that cluster, we already know which day is the most typical.  This approach is not
recommended, since it is fraught with difficulties, however, because it both ignores the results of the
cluster analysis and, at the same time, makes use of it.

The lessons learned from the cluster analysis dictate that before a typical day can be selected, certain
questions about the nature of the desired day must be addressed. Without this distinction, the
concept of typical loses its statistical meaning. These necessary distinctions between different types
of days are summarized by the decision tree in Figure 155 .

Figure 155.   Decision Tree representing the Types of Days in the NAS.

The use of the decision tree is as follows. Reading left to right; a decision must be made at node 1
whether a data set from pre-9/11 or post-9/11 is desired. Since our cluster analysis did not
incorporate the post-9/11 data, the user is forced into the upper branch, pre-9/11. (The lower branch
has been included for sake of completeness.) At decision node 2, the user decides whether to
choose a data set from the collection of no weather days with very low GDP delay minutes (upper
branch) or from the collection of weather days with GDP delay minutes ranging low to high (lower
branch). The GDP variable is a surrogate for a collection of ground delay and weather related
effects. So these branches have been informally dubbed “no weather” days and “weather” days,
which are approximate, descriptive terms.
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Cluster 6

Cluster 2

Cluster 3

Cluster 4
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Unfortunately, we were not able to collect any "weather" variables that had much meaning in
aviation. For example, variables such as IFR, VFR, and cloud ceilings, do not really help determine
what type of day we are having in the NAS. The term "weather" is really a layman's term. What we
are really concerned about are meteorological conditions that have an adverse effect on aviation. So,
we relied on more indirect indicators of weather, such as ground delay programs and reduced
capacity. In some sense, these are the best weather indicators because they are triggered only if
there is weather that adversely affects aviation.

Moreover, the main purpose of this main branch is to avoid making comparisons (with respect to
which is more typical) between days with essentially no GDPs and days with some (or many)
GDPs. We do not claim that there is literally no weather on the days in the upper branch (though it
is a reasonable guide and does not hurt to think of it that way).

Suppose that the user has selected the “very low GDP” (no weather) branch. At the next branch,
we see that there are two types of “very low GDP” days: those with relatively low operations
counts (arrivals and departures), and those with relatively high operations counts. A quantifiable
definition of these terms is provided in each cluster box by the mean number of operations for that
cluster.

Once the user has decided between these two, there is a unique cluster which houses all days with
similar statistical behavior. To the right of the cluster, the most typical day of the cluster has been
specified. This would be the optimal data set to consider, meaning that it is most typical. If this day
is undesirable for subjective reasons (or if some data elements cannot be collected), then the next
most typical day can be selected. We have ranked the days within each cluster by proximity to the
Euclidean center of the cluster; higher indexes indicate a more typical day (ranking not shown).

Next, we return to the weather impacted day branch. There are four different types of days to
choose from corresponding to days with a low level of GDP delay minutes, a medium level GDP
delay minutes, a high level of GDP delay minutes, and a very high level of GDP delay minutes. A
quantifiable definition of these terms is provided in each cluster box by the mean number of GDP
minutes. As described above, the most typical day in the cluster can be chosen as a representative of
that cluster (type of day), or another one can be chosen using the cluster ranking.

The overall interpretation of the results is that there are six types of days in the NAS. Each of those
has a most typical day (listed in the far right column) in Figure 155.  Referring back to Table 21,
one can see additional days that have very similar statistical behavior to the most typical days.
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As for applying these results to the topic of validating NAS simulation, these results indicate that
simulation validation sets should consider weather and GDP modeling as a basis for validation data
sets.  First, if neither weather nor GDP are modeled in the NAS simulation, then the results of our
study indicate that there are two types of days that are useful for validating such simulations.  They
are described by Cluster 1 and Cluster 6.  If weather and GDPs are include in the NAS simulation
– indeed, if weather is included then GDPs must also included – then, depending on the degree of
simulation validation that is desired, there are several choices to be made.  One can validate a NAS
simulation with modeled weather and GDPs through Cluster 2 through Cluster 5 (with special
attention to the lower membership size of Cluster 5). Furthermore, trends may be simulated by
comparing pairs of clusters, e.g., (2, 3) vs. (2, 4) vs. (2, 5), each having a difference in magnitude of
weather and GDP significance in the validation data sets. For a complete validation of a NAS
simulation, simulation developers should validate their NAS simulations with at least one validation
run from each type of day in the NAS.

5.4 Linguistic Descriptions
A more intuitive linguistic description of a cluster can be constructed by examination of its center
vector. Each component of the center vector (µ1 , …, µ7) is mapped into a "high", "medium", or
"low" category, by considering its distance from the mean of the variable over the entire data set
(over all clusters).  That is, let σk be the standard deviation of the kth variable, and let Mk be its mean
over all data. The categories are set via:

Low: µk < Mk − σk

Medium: Mk − σk  ≤ µk ≤ Mk + σk

High: Mk + σk  < µk

This mapping allows us to give an intuitive description of a given cluster, such as "Low levels of
scheduled departures, Medium levels of taxi-in delay", etc.  For instance, a cluster can be defined as
follows:

• [High, Medium, or Low] Scheduled departures
• [High, Medium, or Low] Minutes of taxi delay
• [High, Medium, or Low] Minutes of block delay
• [High, Medium, or Low] Visibility
• [High, Medium, or Low] Airport performance at the 21 ASPM airports
• [High, Medium, or Low] Weather-related MIT restrictions
• [High, Medium, or Low] Delayed aircraft

While these types of linguistic descriptions may help to understand the clusters and the different
types of days in the NAS, we caution that the mapping from variable means to high-medium-low
categories will probably not be unique.  There may be more than one cluster with the same intuitive
description. This means that one cannot work backward from the high-medium-low descriptions to
create clusters. In particular, one cannot conclude that two days have "similar behavior" just because
their high-med-low descriptions are the same. This could corrupt simulation model validation or
demonstration efforts.
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6 Special Days in the NAS
This chapter identifies special types of days in the NAS.  Weather, special events, special times of
the year, such as holidays, and other occurrences affect the NAS by causing increases or decreases
in the volume of traffic.  Some of these occurrences have virtually no effect at all.  These events also
affect different parts of the country in different ways.

6.1 Identification of Special Days in the NAS
The following events categorize particular special days in the NAS:

• Severe Weather Days
• Holiday travel (day before a holiday vs. holiday vs. day after a holiday)
• Special event days
• Rare events

Convective weather season is defined as the period from mid-April through September.  It is
characterized by pop-up thunderstorms.  However, severe weather days can occur outside the
convective weather season.  Holiday travel occurs at different points in the year.  Special events are
usually yearly events other than holidays, such as the Super Bowl.  Rare events include hijackings,
hurricanes, major equipment outages, etc. Figure 156 illustrates the notional way these days
partition the year.

Calendar Year
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

[]     [] [] [ ]     []
H   H   H        H H H        H      HH
       S

Figure 156.  General partitioning of the calendar year based on special days in the NAS.

There is increased air travel around the following holidays:  

Year 2000        Year 2001        Year 2002        Holiday                                                
Jan. 1 Jan. 1 Jan. 1 New Years Day Holiday
Jan. 17 Jan. 15 Jan. 21 Martin Luther King Holiday
Feb. 21 Feb. 19 Feb. 18 Presidents Day
May 29 May 28 May 27 Memorial Day
July 4 July 4 July 4 Independence Day
Sept. 4 Sept. 3 Sept. 2 Labor Day
Nov. 23 Nov. 22 Nov. 28 Thanksgiving Holiday
Dec. 25 Dec. 25 Dec. 25 Winter Holiday

To address known special days, the ATCSCC has a list of Special Traffic Management
Programs (STMPs) for special events for one year.  This list changes every year as new events
arise or a previous year’s events do not happen. There is also an online database of events
occurring during the current month (dates and which airports are affected).  These programs tend to
affect mostly smaller airports.  The following special events may affect total NAS operations:

July 26 – Aug. 1, 2000 Oshkosh Aviation Industry Event (Oshkosh, WI)
Jan. 30, 2000 Super Bowl Football Game (Atlanta, GA)
Jan 28, 2001 Super Bowl Football Game (Tampa, FL)
July 24 – 30, 2001 Oshkosh Aviation Industry Event (Oshkosh, WI)

Convective Weather SeasonNon-Convective SeasonNon-Convective
SeasonHurricane Severe Weather Days

Special Event Day

Convective Weather Season

Holiday
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Feb. 3, 2002 Super Bowl Football Game (New Orleans, LA)
Feb. 8-24, 2002 Winter Olympics (Salt Lake City, UT)
April 7-13, 2002 Sun-n Fun Fly In (Lakeland, FL)
July 23 – 29, 2002 Oshkosh Aviation Industry Event (Oshkosh, WI)

The following special events are also included in the STMP list, but not analyzed in this report:

1. Sun Valley Ski Event
2. Chicagoland NASCAR
3. Brickyard 400
4. Pepsi 400

Such events typically affect the NAS only locally, and we do not include them in our analysis.

The following rare event days have special air travel problems associated with them that are tested
to identify if they are statistically outside the normal distribution:

• Jan. 31, 2000 Alaska Airlines MD-83 crashes into Pacific Ocean off of Los Angeles, CA
• Sept. 14, 2000 Hurricane Gordon
• Sept. 15, 2000 Tropical Storm Helene
• Oct. 19, 2000 ZLA radar equipment outage resulted in major ground stop
• June 5, 2001 Hurricane Allison (Texas)
• Aug. 2, 2001 Tropical Storm Barry (Florida)
• Sept. 11, 2001 Multiple Hijackings/National Tragedy
• Sept. 14, 2001 Tropical Storm Gabrielle (Florida)
• Nov. 12, 2001 Turbulence forces a tail to break apart on an Airbus A-300 over Belle

Harbour, NY
• July 4, 2002 Security Problem related to an shooting at a terminal in LAX

6.2 Analysis of Special Days in the NAS
Figure 157 through Figure 159 illustrate daily NAS operations for 2000 through 2002 from
OPSNET.  Significant special days and events are highlighted and the median number of
operations is given.  The red line is the result of the robust fit regression.  The robust fit method is
less sensitive to outliers than the least squares method.   The median and inter-quartile range was
used to determine the measures of central tendency and dispersion, respectively, of the number of
operations for the year.  These descriptive statistics are more robust than the average or standard
deviation.  The green lines (top to bottom) represent the median plus the inter-quartile range, the
median, and the median minus the inter-quartile range.

Figure 157.  Daily NAS Operations and featured days for 2000.
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Figure 158.  Daily NAS Operations and featured days for 2001.

Figure 159.  Daily NAS Operations and featured days for 2002.

The median number of operations is 188,240 for 2000, 183,070 for 2001, and 180,230 for 2002
(first 8 months).

6.2.1 Severe Weather Days
Our discussions with ATCSCC traffic flow specialists revealed that they view the convective
weather season (May - September) as having very different behavior from days in the non-
convective weather season. Convective weather (e.g., thunderstorms) is highly unpredictable, and
highly disruptive. Even when the area that will be hit by convective activity can be accurately
predicted, there is no way to know exactly where and when storm cells will pop up. This makes it
hard to predict capacity of the affected regions of airspace. In the case of convective weather season,
we let the cluster analysis of Chapter 5 decide if the data should be partitioned. This was one of
the breaks that naturally occurred.

Severe weather events that occurred in the time period of this study had little or no effect on overall
NAS operations.  For example, Hurricane Allison had no obvious effect on operations.  The
hurricane hit Texas hard but did not affect the overall operations of the NAS.  This means the
number of operations affected was too small to notice in the statistics of our study.  A closer study
of flights in and around Fort Worth and Houston Centers will probably reveal decreased
operations.  There was likely a plan in place when this event occurred and the affects of the storm
were localized.  This probably contributed to there not being any notable effect on NAS-wide
operations.  
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Winter storms are also known about in advance, but, occasionally, these storms can hit an area
harder than planned.  Note that winter storms are characteristically different from summer storms in
that winter storms are rarely convective.  Also, winter storms tend to be at lower altitudes, and
aircraft often navigate over such storms.

6.2.2 Holidays
For each observed year, the operations on holidays are low but increase on the surrounding days.
Passengers are usually at their destination on the actual holiday and therefore the total number of
operations falls on those days.  ATCSCC specialists noted that Thanksgiving travel is more
predictable than Christmas travel because Thanksgiving always falls on a Thursday and travel tends
to occur between the Wednesday before and the following Sunday.  Not only is there an increase in
travel the day after Thanksgiving, but also there is a decrease on the Saturday after followed by
another significant increase on Sunday (recall Figure 157 and Figure 158).  Thanksgiving
operations decrease by approximately 50% on the holiday and increases approximately 50% the
day after.  Christmas sees a more gradual decrease in operations beginning 4 to 5 days before the
holiday.  Operations increased more than 100% the day after Christmas. These are considered as
special travel days.

For holidays such as Martin Luther King, Memorial Day, and Labor Day, the valleys in the graph
occur on the days before the actual holiday, a Sunday.  These holidays always fall on Mondays.
Sunday is a light travel day in general so it is fitting that the total number of operations is low.  The
graphs above show similar behavior between 2000, 2001, and 2002 operations around these
holidays, i.e. peaks and valleys tend to occur at the same point in time.  There is an increase in travel
the Thursday and Friday before the holiday, on the holiday, and the day after the holiday.  Observe
that operations on these holidays fell well below the median.

6.2.3 Special Events
Special events like the Super Bowl, NASCAR, and Oshkosh have different effects on the NAS.
Note that a STMP may be pre-emptively avoiding congestion for these events.  Furthermore, these
events affect the NAS locally around the location of these events, and thus, they may not affect
(statistically) the entire NAS. Operations on Super Bowl Sunday fall well below the median while
Pepsi 400 Saturday sees almost average operations.  The Sunday of the Brickyard 400 finds
slightly above average operations.  The Oshkosh Event takes place over a week; the number of
operations appears to follow the usual trend of NAS volume for that week.  For these events, it must
be determined whether or not the actual events are the reason for the slow traffic or because it is a
Sunday or Saturday, which normally sees lower operations numbers.

6.2.4 Rare Events
Rare events have different effects on total operations.  Some are planned for, such as hurricanes and
tropical storms (covered in the section on Severe Weather Days).  Other rare events are
unexpected, such as equipment failures and hijackings.  Within the time period of this study, an
equipment outage, the result of a computer software upgrade, occurred in Los Angeles Center on 19
October 2000.  There were two outages that day: 6:50 am to 8:30 am and 9:00 am to 10:30 am.
The outage had no statistically significant effect on total operations for the day.  There was backup
equipment being used during these outages also, so this could contribute to the minimal impact on
operations.  There was actually a 19% increase in operations from the yearly average.

The events of September 11, 2001 had an overwhelming effect on operations that day and several
days after.  The hijackings took place in the morning (East Coast Time), which is the beginning of
daily operations throughout the NAS.  A NAS-wide GS was issued along with en route flights
being forced to land.  Thousands of flights never got underway.  Operations decreased 97%
between September 10 and 12, 2001.  
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6.3 Analysis Results for Special Days in the NAS
In order to determine which days had a significant impact on operations, special days and events
that fell outside of one inter-quartile range were considered to have greatly impacted operations.
Special days and events such as Martin Luther King Day and the Super Bowl make a significant
impact on NAS operations.  There is a noticeable increase or decrease in operations around these
days. As stated earlier, Martin Luther King Day, Labor Day, and Memorial Day behave similarly.
These holidays take place on Mondays and weekend travelers tend to extend their trips one day and
return on the holiday. Therefore, operations increase on the actual holidays and a few days before
the holidays.  President’s Day has almost no impact on operations.

Thanksgiving and Christmas operations also behave similarly in that they greatly impact the NAS.
The days before see just above average operations.  Operations considerably decrease on the actual
holiday and significantly increase the days after.  

Rare events that are specific to small regions of the country also do not greatly affect operations.
Examples are hurricanes and equipment outages.  Obviously, a rare event such as September 11th

drastically affected operations.  The effect is seen on the day of the event and several days after.
Special events, such as racing events and Oshkosh, have little or no effect on operations.

Table 22  summarizes all of the above findings.  The data is classified as follows:

• High: Data falls 1 or more standard deviations from the median.
• Medium: Data falls between .5 and 1 standard deviations from the median.
• Low: Data falls .5 or less standard deviations from the median.

A “High” score means operations significantly increased in a positive or negative direction and a
“Low” score means operations barely increased or decreased.  A score of “NO Effect” means
there was no apparent effect on operations.  Recall that although the actual day may have no effect,
the days surrounding an event may be affected.  To summarize, the most significant Special Days in
the NAS are from the Sept. 11, 2001 tragedy, the Super Bowl, and from the following re-occurring
holidays:  4th of July, Thanksgiving, and Christmas.

Table 22.  Summary of Special Days.

Day
Probable Overall Effect on NAS

(High, Medium, Low, NO EFFECT)

MLK Holiday Medium
Super Bowl High
President’s Day NO Effect
Memorial Day Medium
Hurricane Allison NO Effect
4th of July High
Pepsi 400 NO Efftect
Oshkosh NO Effect
Labor Day Low
Sept. 11th High
ZLA Outage NO Effect
Thanksgiving High
Christmas High

Finally, we note the relationship between the holidays studied as special days in the NAS and the
cluster analysis in Chapter 5 that yielded six types of days in the NAS. We investigated type of



102

day the holidays tended to be classified as. There were eight holidays in year 2000, and six holidays
in year 2001 (Thanksgiving and Christmas occurred after the end of our data window, September
11, 2001), for a total of 14 holidays. Figure 159  shows the distribution of holidays within the type-
of day clusters. Since holidays tend to be low traffic, quiet days in aviation, we would expect that the
holidays would tend to fall in the "Very Low" GDP level bins. Indeed, this is the case. 10 of the 14
holidays fell in the "Very Low" GDP level bins. This is not surprising, since traffic tends to be
lower on holidays, and lower traffic days tend to have few GDPs. The other 4 holidays are spread
over the "Low", "Medium", and "High" level bins. There were no holidays in the Very High type of
day bin.
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7 Conclusions and Recommendations
This chapter states the conclusions and some recommendations.

7.1 Conclusions
The first and foremost conclusion of this study is that there is no single day of the year which could
be described as a “typical” day in the NAS.  We found that one must select the “type” of day in
the NAS first before identifying the most “typical” day of that type.  Hence, we identify a total of
six “typical” days in the NAS, one for each of six representative “types” of days in the NAS.

We have concluded that a day in the NAS is described by a set of 8 key variables that constitute an
optimal NAS feature vector.  We reached this point by considering 65 NAS variables in our
analysis, which statistically clustered into 8 major bundles, each bundle with a single representative
variable. These variables represent the 8 variables that constitute the “optimal” feature vector for
the NAS, as identified in Table 23 .

Table 23.  The Optimal NAS Feature Vector Variables.

Optimal NAS Feature Vector
Variable

Description of Variable

Gate Delays Daily Count of OAG-Based Gate Delays
Overall Delays Total Delay Count From OPSNET
On-time Performance Daily Total OAG-Based Airport Departure Delay

(minutes)
Traffic Volume Daily Arrival Count
Airport Performance Metric Std Dev of Airport Performance Score (21 ASPM

Airports)
Cancellations Daily Arrival Cancellations Count
Volume-related Delays Total Operation Count From OPSNET
Weather and GDPs Total Delay attributed to GDPs (minutes)

The number of minutes of ground delay assigned in a GDP is the most prominent variable in
characterizing the different types of days in the NAS. With the exception of "blue sky days", once
the number of GDP minutes is known, a determination of how typical a day is can readily be made
by comparing it to other days with similar GDP minutes. A weighted Euclidean metric (normalized
for variance) was used to rank each day within a cluster as most typical to least typical; days closest
to this center of the cluster were considered most typical.

Our study indicates that there are six types of days in the NAS (seven, if one is willing to count the
outlier cluster):

• Type of NAS Day 1:  Very low GDP level, with low operations count (cluster 1)
• Type of NAS Day 6:  Very low GDP level, with high operations count, (cluster 6)
• Type of NAS Day 2:  Low GDP level (cluster 2)
• Type of NAS Day 3:  Medium GDP level (cluster 3)
• Type of NAS Day 4:  High GDP level (cluster 4)
• Type of NAS Day 5:  Very High GDP level (cluster 5)

NAS Days 1 and 6 were characteristic of no weather days, whereas Days 2 through 5 were all
weather impacted.
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Figure 161.   Decision Tree representing the Types of Days in the NAS.

The necessary distinctions between these different types of days are summarized by the decision
tree, as illustrated in Figure 161 .  The use of the decision tree is as follows. Reading left to right; a
decision must be made at node 1 whether a data set from pre-9/11 or post-9/11 is desired. Since our
cluster analysis did not incorporate the post-9/11 data, the user is forced into the upper branch, pre-
9/11. (The lower branch has been included for sake of completeness.) At decision node 2, the user
decides whether to choose a data set from the collection of no weather days with very low GDP
delay minutes (upper branch) or from the collection of weather days with GDP delay minutes
ranging low to high (lower branch). The GDP variable is a surrogate for a collection of ground
delay and weather related effects. So these branches have been informally dubbed “no weather”
days and “weather” days, which are approximate, descriptive terms.

Of the holidays, Independence Day, Thanksgiving and Christmas holidays greatly impact the NAS.
The Super Bowl also impacts the NAS in a similar manner to a holiday.  Operations considerably
decrease on the actual holiday and significantly increase the days after.  Our study does not suggest
that holidays need to be separated as a separate type of day in the NAS, most holidays fall within
one or two of the clusters identified in the type-of-day results.

Rare events typically impact only small regions of the country, hence, they do not greatly affect
operations.  Examples are hurricanes and equipment outages.  Obviously, a rare event such as
September 11th drastically affected operations.  Special events, such as racing events and Oshkosh,
have little or no effect on the aggregate statistics of NAS operations.

Finally, there is an important complication during the course of this study; namely, data integrity.
Certain data sources were plagued with missing records, typographical errors, incorrectly formatted
entries, and poor documentation.  This posed a challenge to overcome, as much of the analysis

Cluster 1

Cluster 6

Cluster 2

Cluster 3

Cluster 4

Cluster 5
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required both well-formatted and complete data sets to be of value.  A fair amount of effort was
required to cleanse the data, and this entailed developing software routines that would revise
inconsistent records in most circumstances.

7.2 Recommendations for Conducting NAS Simulation Validations
In this study, we focused on determining a small, manageable set of data that can be used to validate
NAS-wide simulations.  This was accomplished by analyzing historical datasets to determine the
variable dependencies and to determine the most statistically significant variables that constitute a
minimal NAS feature vector size.  Our analysis suggests that validations of low fidelity NAS-wide
simulations should mainly focus on the 8 variables that are identified in the optimal NAS feature
vector.  This recommendation will potentially reduce the total quantity of data analyzed in validating
a low fidelity NAS simulation.  We did not investigate this issue with respect to medium and high
fidelity simulations, so we refrain from making a recommendation for validating those types of
simulations.  When higher fidelity is added to a NAS simulation, more than just the aggregate
statistics should be considered for the validation.  Additionally, one must note that our
recommendation assumes that there is no other variable independent of the 8 variables in the
optimal NAS feature vector important to a NAS simulation validation.  Our recommendation is that
NAS simulation validations should consider at least those elements that constitute the optimal NAS
feature vector, and if not possible, to attempt to select a variable from the same cluster set as a
substitute.

The data requirements listed in Chapter 2 demonstrate that the NAS is a very complex system with
very many variables that describe it.  A very small subset of these variables was studied in our
analysis, and of those, the minimal set of variables was determined to define the optimal NAS
feature vector.  This approach is open to speculation when a new variable that was not in the original
set of 65 variables is introduced.  While engineering judgment was used to select a set of 8
variables that most likely characterize the behavior of the NAS, we were limited to variables that are
available in historical datasets.  Thus, our conclusions are limited to what can be said about how the
65 variables relate to the 8 variables of the optimal NAS feature vector.  Caution must be taken
when considering new variables outside the set of 65 variables in this study.  In such a case, we
recommend that a small scale study be performed to test if the new variable is dependent on one or
more of the dominant variables in the optimal NAS feature vector.  If the new variable is dependent,
then it is not recommended to add the new variable to the validation dataset.  If the new variable is
independent, then engineering judgment should be used to determine if the new variable should be
included in a NAS simulation validation.

Our type-of-day analysis indicated that NAS simulation validation sets should consider weather and
GDP modeling as a basis for validation data sets.  First, if neither weather nor GDP are modeled in
the NAS simulation, then the results of our study indicate that there are two types of days needed to
validate such simulations.  They are embodied by Cluster 1 and Cluster 6.  If weather and GDPs
are include in the NAS simulation – indeed, if weather is included then GDPs must also included –
then, depending on the degree of simulation validation that is desired, there are several choices to be
made.  One can validate a NAS simulation with modeled weather and GDPs through Cluster 2
through Cluster 5 (with special attention to the lower membership size of Cluster 5). Furthermore,
trends may be simulated by comparing pairs of clusters, e.g., (2, 3) vs. (2, 4) vs. (2, 5), each having a
difference in magnitude of weather and GDP significance in the validation data sets. For a complete
validation of a NAS simulation, simulation developers should validate their NAS simulations with at
least one validation run from each type of day in the NAS.

7.3 Recommendations for Future Research
In this study, performance statistics were collected and assessed on a NAS-wide level. An area of
future study would be to apply a geographical component to the study.  Questions of interest are:
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• Can a region of the country serve as an indicator of overall NAS behavior? For instance, if
delays are high in the northeast, does this mean that delays are high all over the NAS? Can we
collect performance and delay statistics strictly in one region (e.g., the northeast) to assess the
overall condition of the NAS?

• In terms of performance metrics, what is the most natural decomposition of the NAS into
regions? Does this decomposition coincide with the ARTCCs?

• Are there any local anomalies (e.g., in weather and delays) severe or noteworthy enough to be
significant drivers of NAS-wide statistics?

• Our reduction of the size of the NAS feature vector to a set of 8 variables greatly simplified the
amount of data that was analyzed in the final cluster analysis.  However, we still gather statistics
over the ASPM-50 airports whenever possible.  This leads us to the following questions:  What
is the smallest number of airports whose performance is a reasonable surrogate for NAS-wide
airport performance? And which airports are these?

• Are there days when a small, local weather disturbance causes big problems?  For example, can
a small isolated storm over Chicago, IL cause NAS-wide problems?  To what degree does fog
in San Francisco, CA affect the NAS?

A major theme which was absent – and which could be taken up in future research – is the concept
of a cause-and-effect chain.  For instance:  A, B, and C cause D;  B and D cause E;  A, B, C, and E
cause F.  With such a network, we might be able to identify that certain variables may be treated as
dependent variables in one instance, but as independent variables in another.  
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Appendix A: Notation for Statistics
Figure 162 illustrates the notation that is implicitly used throughout this report to describe the
statistics within graphics.

Figure 162.  Notation used in statistical plots.
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Appendix B: Fleet Mix
This appendix investigates fleet mix in terms of user class and weight class data for the year 2001.
Insufficient data were available for a study of year 2000 data, so these variables were not included
into the cluster analysis of this report.  These data are presented here for additional understanding
of the NAS.  Overall, fleet mix stays relatively constant from day to day, which eliminates the fleet
mix as a useful variable for the cluster analysis.  Furthermore, the fleet mix data could not be used
in the cluster analysis due to missing data.

Figure 163  depicts the user class totals for 2001.  User classes are defined as Air Cargo/Freight,
Air Taxi, Commercial, General Aviation (GA), Military, and Other. The details of these user class
statistics are given in Figure 164 through Figure 169.  The “Other” aircraft is assigned to
aircraft, which were not classified in the POET ETMS database.  There are 49 days worth of data
missing from the user class data, excluding the military class.  The military class is missing 162
days.  There are some outliers that are inexplicable at this point in time.  

Figure 163.  User Class Totals for the year 2001.

Figure 164.  Air Cargo User Class Totals for the year 2001.
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Figure 165.  Air Taxi User Class Totals for the year 2001.

Figure 166.  Commercial User Class Totals for the year 2001.

Figure 167.  GA User Class Totals for the year 2001.

Figure 168.  Military User Class Totals for the year 2001.
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Figure 169.  Other User Class Totals for the year 2001.

Figure 171 depicts the weight class (separation class) totals for 2001.  Weight class totals are
defined as Heavy, Large, and Small Figure 171 through Figure 174 illustrates detailed plots for
the classes.  For weight class, when there is no record, a Null weight class is assigned.  There are 50
missing days of data from the weight class data.  

Figure 170.  Weight Class Totals for the year 2001.

Figure 171.  Heavy Weight Class Totals for the year 2001.

Figure 172.  Large Weight Class Totals for the year 2001.



113

Figure 173.  Small Weight Class Totals for the year 2001.

Figure 174.  Null Weight Class Totals for the year 2001.
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Appendix C: Cancellations and Weather
This appendix investigates the relationship between cancellations and weather data.

The Post Operations Evaluation Tool (POET)-archived ETMS database was used to query data
from 21 major airports for January 29, 2002.  The cancellation statistics may differ from those
reported in ASPM, since ASPM records cancellations for 50 major airports.  However, the 21
major airports in this plot are the largest hub airports in the NAS. Note that there are two groups of
departure cancellations, one around 15 hours and one about 2 hours prior to departure (see Figure
175).  Although the airlines may submit cancellations days or even weeks before departure, Volpe
does not synchronize the airline CDM data with ETMS data until 15 hours before departure time.
This explains the large spike in the cancellation data at 15 hours prior to departure, which accounts
for approximately 38% of the cancellations.  These plots also show that flights are often cancelled
at or after scheduled departure times.
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Figure 175.  Cancellation times relative to scheduled take off time grouped by 15-minute bins.

Furthermore, one can track the cancellation statistics day by day to see how the statistics of the
mean and standard deviation differ.  To illustrate this point, the POET archived ETMS database was
used to query data from 21 major airports for the week of January 28 - February 1, 2002. Figure
176 through Figure 181 illustrate the cancellation statistics for this time period.  This set of
cancelled flights does not include those flights that are considered “cancelled but flew”, or regular
controlled flights.  A “cancelled but flew” flight is a flight that received a cancellation message and
still flew.  This happens if a flight was cancelled but ETMS received an activation message within a
certain time of the predicted departure time.  An airline will issue cancellation messages when
substituting flights during a GDP.  Also, flights that are diverted to an alternate destination will
receive a cancellation message.  These are examples of flights that received cancellation messages
but flew.  Note that the peak number of cancellations for this period is highly related to the location
of the weather activity.

These cancellations are due to the fact
that 15 hours prior to take off is the
first time ETMS allows an entry into
the database for a cancellation of a
flight.

Jan. 29, 2002

Prior to Departure After Scheduled
Departure
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Figure 176.  Cancellation times relative to scheduled take off time for Jan. 28, 2002.

Figure 177.  Cancellation times relative to scheduled take off time on Jan. 29, 2002.

Figure 178.  Cancellation times, relative to scheduled take off time for a heavy weather day,
Jan. 30, 2002.
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Figure 179 .  Cancellation times, relative to scheduled take off time for a heavy weather day,
Jan. 31, 2002.

Figure 180.   Cancellation times, relative to scheduled take off time for a heavy weather day,
Feb. 1, 2002.
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Appendix D: Variable Bundling Process
The following table provides the process used for variable bundling.

Preprocessing: Data restricted to before September 11, 2001. This removes the influential effects
of outliers, which we observed on or just after September 11. There is some
argument for just excluding a few months worth of data just after September 11,
but we decided to err on the conservative side.

Analysis
Iteration

Bundle
Count

Observation Variable
Eliminated

1 12 Variables v32 and v33 (IFR and VFR) have a perfect correlation
(correlation coefficient = 1).  By definition, these variables sum to 1 on
each day.

v33

2 11 Variables v47 and v48 (Volume-related MIT restrictions, Total MIT
restrictions) are highly correlated with cc = 0.83. One of v47 and v48
can be eliminated. We chose v47 on the grounds that it is given
implicitly in v48.

v47

3 10 Variables v62 (Total Equipment Related Delay Count from OPSNET) and v63
(Total Runway Related Delay Count from OPSNET) are in the same bundle, but
are not strongly associated with the bundle. They are most likely in the same
bundle because they each have a large number of outliers (e.g., days 322, 334,
and 342). We decided to keep this bundle, since it explains about 1/40 of the
variation in the data set.

Note
We wish to get a bundle count to 7 or less.  So, we force a reduction in bundle
count. We hope that bundle 10 is eliminated, since it is not a very good indicator
of NAS conditions.

4 9 Variables v62 and v63 have moved into a delay-related bundle. We would like to
get the bundle count down to 7 or less. This is justified by the fact that the gain in
explanation of variance from the existence of the bundles 8 and 9 is less than 2%.
Bundles 8 and 9 are adding 1/22 of total variation.

5 7 The membership count of each bundle is now 5% or more. A rule of thumb in
bundle analysis is that no bundle should contain less than 5% of the data points.
However, we note that bundle 1 has too many data points; it contains a lot of
delay statistics and a lot of GDP statistics. So, we request 8 bundles.

6 8 Bundle 1 broke into two bundles, which is what we felt should happen on an
intuitive level.  The delay statistics formed one bundle, while the GDP statistics
formed another.
We note that v50 (Total En route Delay Count from OPSNET) is very weakly in
bundle 1; it's association is so weak that it really could be in any bundle. We
chose to put it into bundle 2, with the other delay-related statistics.

The variable v30 (Cloud Ceilings) is weakly in bundle 3.  A plot of
this variable over time reveals that is has no apparent pattern. So, we
eliminate v30 from the study.

v30

Bundle 2 is mostly OPSNET "Total delay" information. Seems OK.
Bundle 3 is pretty much airport/gate/departure delays. Seems OK.
Bundle 4 variables share a common attribute, traffic volume. This is
good.
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Bundle 5 is airport performance metrics (4 members). Move this later. We
performed a centroid bundle analysis. Again a weak association results. IFR
could be its own bundle. Decide later.  No connection between CEILING and
IFR, or anything else for that matter. We checked all pairs via scatter plot. Keep
this as its own bundle.
Bundle 6 consists of cancellation statistics and two of the airport
performance scores (v35 and v36). Direct examination in X-gobi
reveals strong association. We eliminate these two variables because
they are virtually constant over time, and therefore add no value to a
description of the NAS. Now, bundle 6 is just cancellation statistics.

v35, v36

Eliminate v32 (IFR) from the study on the grounds that is does not
really belong in any of the bundles and that it would add no value to
NAS description by forming its own bundle. Also, it had no
correlation with the cloud ceilings variable, which was also eliminated.
Weak association with any of the bundles was confirmed with a
centroid bundle analysis.

v32

Bundle 7 is mostly center and volume delays. Note that equipment and
runway delays again have very weak associations. No home exists for
these variables. We decide to eliminate v62, v63.

v62, v63

GDP count, GDP length and GDP delay minutes are strongly related (correlation
coefficients over 0.83).
We noticed that clusters 2 and 3, (overall delays and on-time performance,
respectively.) should perhaps be the same clusters, since they are complements of
each other. We plotted one representative variable (v21 and v50) against the other
and found it to be a data cloud, meaning that there is no correlation. This is true
even when outliers are removed. So, we are comfortable with these being two
different clusters. It would be nice to know, at some point, why these variables are
so unrelated.

Final Results

8 variable bundles are formed, each with a distinct statistical and intuitive
characteristic. A representative variable was chosen for each bundle. The variable
was the one with the strongest association with the bundle. Also, a name is given
to each bundle based on the most common characteristic in that bundle. We note
that in each bundle, the second or third most strongly associated variable could
also serve as the representative, since their association was almost as strong as the
most strongly associated variable.
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Appendix E: Type-of-Day Cluster Analysis Process
The following table provides the process used for the type-of-day clustering.

Preprocessing
:

Data restricted to before Sept. 11 2001. We have already bundled the variables
(using cluster analysis) into 8 bundles, and selected a representative variable for
each bundle. This creates an 8-dimensional vector for each day. These are the
data points upon which we now perform cluster analysis.

Based on our review of each variable and our intuition, we break the data into
six clusters. This number comes from a break into weather vs. non-weather
days, then each of these branches breaks into three clusters: high volume,
medium volume, low volume.

First, do a relaxed cluster analysis (before forcing any breaks).

We note that daily schedule arrival count is tri-modal, with breaks at 20,500 and
22,000 flights. On the other hand, daily arrival count is bimodal with a break at
21,000. We choose daily arrival count, because it has a stronger association in
the traffic volume cluster. So, we force a traffic volume break at 21,000 flights.

Note: why are v46 and v5 in different variable bundles? The scatter plot is very
spread out.

Analysis
Iteration

Cluster
Count Observation

1 20 Sizes are 2, 1, 14, 21, 1, 3, 13, 24, 63, 1, 1, 96, 83, 92, 8, 80, 21, 25, 33, 37. 10
clusters have sizes 15 and above (15 chosen arbitrarily; about 2%).

2 10 Recluster with a max. of 10 clusters. Cluster counts are now 1, 98, 60, 26, 3, 7,
170, 113, 81, 60. We will now try for 7 clusters, because only 7 of these have
significant membership.

3 7 Recluster with a max. of 7 clusters. Former small ones got lumped together. 62,
183, 104, 68, 16, 182, and 4 are the cluster sizes.
We note that v57 (terminal volume related delay) varies as a super-linear
function of v47 (total operations from OPSNET), with increasing variance. This
makes sense, since delays increase super-linearly with increasing operations;
variance will increase quadraticaly as well.
We note that v56 (total weather related delays) and total delays are virtually the
same. This just means that most delays are attributable to weather.

Cluster 1 has (62 elements) has mostly Sunday, some Monday and Tuesday,
but no Wed or Thu. This is sort of a Sunday (low volume) cluster.

Cluster 2 has no apparent day-of-week pattern; uniform over day of week

Cluster 3 is strangely low on Saturdays, yet generally high or extreme values.

Cluster 4 is low on Saturday, but has many other days; this is high or extreme
volume.
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Cluster 5 (15 elements) has high or medium volume but too low count to tell,
maybe holidays; 8/15 days are Saturdays (medium volume). Don't know what
to make of it. Cluster with 15 elements: Th 4/20/00, Tu 6/13/00, Th 7/27/00, Fr
10/6/00, Fr 10/27/00, Mo 11/6/00, Fr 12/15/00, We 3/21/01, Fr 4/6/01, Mo
5/21/01, Tu 5/22/01, Fr 6/22/01, Fr 8/10/01, Mo 8/13/01, Fr 8/31/01.

Cluster 6 is very high on Saturday and very low on Sunday; the rest random
(Monday a bit low too). Appears to be a Saturday (medium volume) cluster.

Cluster 7 elements (only 4 of them); can't tell about day of week; elements are:
Fr 7/28/00, Su 11/26/00, Su 02/25/01, Th 4/12/01.
Discovery! Clusters are grouped by GDP minutes. Check other representative
variables to see if it happens with any others.
Same for v16.
v47 (total delay count): no association with cluster variable
v46 have some effect but not much. For v46, we check the first cluster.
v5 is dead.
v38 is dead.
v8 has a similar pattern to v42, but clusters have more overlap. This is because
v8 (gate delays) is strongly related to v42 (ground delays in a GDP).

Note: v56 (total weather delays) doesn't work either!
Note: v43 (weather related MITs) doesn't work either!
Try re-clustering without v42 present. We got 8 clusters with significant
membership using a max. of 20.  We got 7 clusters with significant
membership using a max. of 10.  We got 7 clusters with significant
membership using a max. of 7. Now, we no longer have clustering by v42. This
means v42 is a natural clustering variable. We note that v8 has a little structure
(like before) but not distinct. No other dominant variable has structure to it.

Final Results
There are 6 types of days in the NAS; each of these is primarily characterized
by its level of GDP minutes, with the caveat that there is some overlap between
these clusters. That is, a day with level X of GDP minutes could be in one of
two clusters. So, the other variables 7 (out of 8) are still needed to fully
characterize a day. We are still investigating which (if any) subset of the other
seven variables distinguishes these ambiguous cases.

Note: we actually had 7 clusters in the final analysis, but cluster 7 had only 4
outlier data points, so we disregard it.
Note: this means that the same type of analysis will most likely work on the
entire data set, that is, Jan. 2001 to date, rather than chopping off the data at
Sept. 10, 2001.
One can characterize a day in the NAS by adding it to the existing data set of
observations and using a cluster analysis. Knowledge of just GDP minutes on
a day is not sufficient, though it would narrow the possible clusters down to 2.
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Appendix F: Airport Identifiers
This appendix identifies 3 letter airport identifiers (not all are referred to in this report).

Code Airport Name Location
ABY SOUTHWEST GEORGIA REGIONAL ALBANY, GEORGIA
APF NAPLES MUNI NAPLES, FLORIDA
ATL WILLIAM B HARTSFIELD ATLANTA INTL ATLANTA, GEORGIA
BFI BOEING FIELD/KING COUNTY INTL SEATTLE, WASHINGTON
BFL MEADOWS FIELD BAKERSFIELD, CALIFORNIA
BNA NASHVILLE INTERNATIONAL NASHVILLE, TENNESSEE
BOS GENERAL EDWARD LAWRENCE LOGAN INTL BOSTON, MASSACHUSETTS
BUF GREATER BUFFALO INTL BUFFALO, NEW YORK
BWI BALTIMORE-WASHINGTON INTL BALTIMORE, MARYLAND
CLE CLEVELAND-HOPKINS INTL CLEVELAND, OHIO
CLT CHARLOTTE/DOUGLAS INTL CHARLOTTE, NORTH CAROLINA  CAROLINA
CRP CORPUS CHRISTI INTL CORPUS CHRISTI, TEXAS
CVG CINCINNATI/NORTHERN KENTUCKY INTL COVINGTON/CINCINNATI, OH,KENTUCKY
CYYZ LESTER B. PEARSON INTL TORONTO,ONT,CANADA
DEN DENVER INTL DENVER,COLORADO
DET DETROIT CITY DETROIT,MICHIGAN
DTW DETROIT METROPOLITAN WAYNE COUNTY DETROIT,MICHIGAN
EUG MAHLON SWEET FIELD EUGENE,OREGON
EWR NEWARK INTL NEWARK,NEW JERSEY
FNT BISHOP INTERNATIONAL FLINT,MICHIGAN
HRL VALLEY INTL HARLINGEN, TEXAS
IAD WASHINGTON DULLES INTERNATIONAL WASHINGTON, DIST. OF COLUMBIA
IAH HOUSTON INTERCONTINENTAL HOUSTON, TEXAS
JAN JACKSON INTERNATIONAL JACKSON, MISSISSIPPI
JFK JOHN F KENNEDY INTL NEW YORK, NEW YORK
LAS MC CARRAN INTL LAS VEGAS, NEVADA
LAX LOS ANGELES INTL LOS ANGELES, CALIFORNIA
LBB LUBBOCK INTL LUBBOCK, TEXAS
LGA LA GUARDIA NEW YORK, NEW YORK
MCI KANSAS CITY INTL KANSAS CITY, MISSOURI
MCO ORLANDO INTL ORLANDO, FLORIDA
MDT HARRISBURG INTERNATIONAL HARRISBURG, PENNSYLVANIA
MDW CHICAGO MIDWAY CHICAGO, ILLINOIS
MEM MEMPHIS INTL MEMPHIS, TENNESSEE
MFE MC ALLEN MILLER INTL MC ALLEN, TEXAS
MGM DANNELLY FIELD MONTGOMERY, ALABAMA
MHT MANCHESTER MANCHESTER, NEW HAMPSHIRE
MKE GENERAL MITCHELL INTERNATIONAL MILWAUKEE, WISCONSIN
MLI QUAD-CITY MOLINE, ILLINOIS
MSP MINNEAPOLIS-ST PAUL INTL MINNEAPOLIS, MINNESOTA
MYR MYRTLE BEACH INTL MYRTLE BEACH, SOUTH CAROLINA
ORD CHICAGO O'HARE INTL CHICAGO, ILLINOIS
PDX PORTLAND INTL PORTLAND, OREGON
PHX PHOENIX SKY HARBOR INTL PHOENIX, ARIZONA
PSP PALM SPRINGS REGIONAL PALM SPRINGS, CALIFORNIA
RKD KNOX COUNTY REGIONAL ROCKLAND, MAINE
RSW SOUTHWEST FLORIDA INTL FORT MYERS, FLORIDA
SEA SEATTLE-TACOMA INTL SEATTLE, WASHINGTON
SFO SAN FRANCISCO INTL SAN FRANCISCO, CALIFORNIA
SGF SPRINGFIELD-BRANSON REGIONAL SPRINGFIELD, MISSOURI
SJC SAN JOSE INTERNATIONAL SAN JOSE, CALIFORNIA
SNA JOHN WAYNE AIRPORT-ORANGE COUNTY SANTA ANA, CALIFORNIA
SYR SYRACUSE HANCOCK INTL SYRACUSE, NEW YORK
YKM YAKIMA AIR TERMINAL YAKIMA, WASHINGTON
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Appendix G: BTS-Defined Hub Airports
The BTS (www.bts.gov) defines Large, Medium, and Small Hub airports to be the following.

Large Hubs (29 airports)
• Atlanta, GA
• Baltimore, MD
• Boston, MA
• Charlotte, NC
• Chicago, IL
• Cincinnati, OH
• Dallas/Ft. Worth, TX
• Denver, CO
• Detroit, MI
• Honolulu, HI
• Houston, TX
• Las Vegas, NV
• Los Angeles/Burbank/Long Beach, CA
• Miami/Ft. Lauderdale, FL
• Minneapolis/St. Paul, MN
• New York, NY
• Newark, NJ
• Orlando, FL
• Philadelphia, PA/Camden, NJ
• Phoenix, AZ
• Pittsburgh, PA/Wheeling, WV
• Portland, OR
• St. Louis, MO
• Salt Lake City, UT
• San Diego, CA
• San Francisco/Oakland, CA
• Seattle/Tacoma, WA
• Tampa/St. Petersburg/Clearwater/Lakeland, FL
• Washington, DC

Medium Hubs (31 airports)
• Albuquerque, NM
• Anchorage, AK
• Austin, TX
• Buffalo & Niagara Falls, NY
• Cleveland, OH
• Columbus, OH
• El Paso, TX



124

• Fort Myers, FL
• Hartford/Springfield/Westfield, CT
• Indianapolis, IN
• Jacksonville, FL
• Kahului, HI
• Kansas City, MO
• Louisville, KY
• Memphis, TN
• Milwaukee, WI
• Nashville, TN
• New Orleans, LA
• Oklahoma City, OK
• Omaha, NE
• Ontario/San Bernardino/Riverside, CA
• Providence, RI
• Raleigh/Durham, NC
• Reno, NV
• Sacramento, CA
• San Antonio, TX
• San Jose, CA
• San Juan, PR
• Tucson, AZ
• Tulsa, OK
• West Palm Beach/Palm Beach, FL

Small Hubs (54 airports)
• Albany, NY
• Allentown/Bethlehem/Easton, PA
• Amarillo/Borger, TX
• Atlantic City, NJ
• Baton Rouge, LA
• Birmingham, AL
• Boise, ID
• Brownsville/Harlingen/San Benito, TX
• Cedar Rapids/Iowa City, IA
• Charleston, SC
• Charlotte Amalie, St. Thomas, VI
• Colorado Springs, CO
• Columbia, SC
• Corpus Christi, TX
• Dayton, OH
• Des Moines, IA
• Fairbanks, AK



125

• Fayetteville, AR
• Grand Rapids, MI
• Green Bay/Clintonville, WI
• Greensboro/High Point/Winston-Salem, NC
• Greenville/Spartanburg, SC
• Guam, GU
• Gulfport/Biloxi, MS
• Harrisburg/York, PA
• Hilo, HI
• Huntsville, AL
• Indio/Palm Springs, CA
• Islip, NY
• Jackson/Vicksburg, MS
• Kailua-Kona, HI
• Knoxville, TN
• Lexington/Frankfort, KY
• Lihue, HI
• Little Rock, AR
• Lubbock, TX
• Madison, WI
• Manchester/Concord, NH
• Midland/Odessa, TX
• Moline, IL
• Myrtle Beach, SC
• Norfolk/Virginia Beach/Portsmouth/Chesapeake, VA
• Pensacola, FL
• Portland, ME
• Richmond, VA
• Rochester, NY
• Sarasota/Bradenton, FL
• Savannah, GA
• South Bend, IN
• Spokane, WA
• Syracuse, NY
• Valparaiso, FL
• White Plains, NY
• Wichita, KS
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Appendix H: Data for Types of Days in the NAS
The following table presents the final clusters for the different types of days of the NAS.

Day of Dist from

Date Week Cluster Center

21101 0 1 1443.14

31200 0 1 1799.19

10701 0 1 2643.26

71501 0 1 2667.22

21801 0 1 2998.41

10800 6 1 3013.58

70201 1 1 3014.89

20700 1 1 3027.82

31801 0 1 3080.46

70300 1 1 3502.60

42901 0 1 3617.61

90400 1 1 3692.51

52800 0 1 3701.97

51500 1 1 3901.94

31300 1 1 4346.41

12900 6 1 4645.67

12200 6 1 5029.69

60400 0 1 5068.79

20401 0 1 5118.92

100300 2 1 5183.18

52801 1 1 5226.19

62501 1 1 5522.28

31101 0 1 5646.19

20600 0 1 5849.82

52701 0 1 5875.83

43001 1 1 6170.60

30501 1 1 6240.71

60500 1 1 6313.01

61100 0 1 6349.66

111200 0 1 6603.86

52001 0 1 6679.98

62401 0 1 6727.57

32600 0 1 6739.60

40201 1 1 6751.78

50601 0 1 6772.90

61001 0 1 6784.99

11500 6 1 6982.36

100800 0 1 7134.57

41501 0 1 7136.00

43000 0 1 7136.38

12801 0 1 7189.89

72400 1 1 7279.92

82700 0 1 7525.68

62601 2 1 7643.08

90201 0 1 7820.11

12201 1 1 7846.35

122400 0 1 7982.82

11600 0 1 8075.07

22800 1 1 8093.23

40301 2 1 8249.71

12500 2 1 8258.47

51301 0 1 8494.31

13100 1 1 8621.06

50800 1 1 9083.79

10101 1 1 9142.84

42300 0 1 10193.43

32501 0 1 10460.39

22300 3 1 11683.66

123100 0 1 12140.49

12301 2 1 14619.57

10100 6 1 15926.52

13000 0 1 16223.98

80301 5 2 1572.28

90500 2 2 1595.86

21700 4 2 2222.09

60800 4 2 2839.22

111400 2 2 3003.41

112800 2 2 3243.90

82600 6 2 3347.75

120600 3 2 3984.36

52901 2 2 3984.85

70500 3 2 4010.60

12800 5 2 4011.78

81200 6 2 4093.16

40400 2 2 4313.71

50900 2 2 4327.68

71401 6 2 4368.60

80300 4 2 4394.14

53100 3 2 4458.51

41800 2 2 4562.76

41100 2 2 4645.63

62200 4 2 4757.46

30101 4 2 4864.70

60101 5 2 5378.51

70800 6 2 5395.08

91800 1 2 5412.43

62800 3 2 5432.21

41500 6 2 5440.44
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51700 3 2 5463.60

41301 5 2 5473.78

101700 2 2 5507.98

71701 2 2 5536.31

62301 6 2 5603.69

40500 3 2 5608.17

21501 4 2 5637.94

92400 0 2 5643.83

72801 6 2 5668.08

12701 6 2 5754.52

102100 6 2 5821.41

70301 2 2 5854.07

71500 6 2 5857.76

40700 5 2 5909.96

30601 2 2 5962.83

83001 4 2 5964.20

91400 4 2 5991.79

101000 2 2 6076.16

70200 0 2 6148.44

71601 1 2 6182.99

91300 3 2 6255.54

110300 5 2 6276.73

60201 6 2 6296.52

80501 0 2 6333.23

32901 4 2 6376.92

10301 3 2 6377.03

90300 0 2 6403.61

12501 4 2 6462.15

31600 4 2 6495.19

92700 3 2 6501.10

72001 5 2 6514.21

12400 1 2 6520.13

42600 3 2 6522.07

81300 0 2 6547.66

103100 2 2 6586.65

41600 0 2 6594.97

42201 0 2 6628.05

111500 3 2 6630.49

70900 0 2 6662.26

81101 6 2 6678.13

111900 0 2 6731.96

51400 0 2 6772.37

50700 0 2 6799.81

90900 6 2 6853.00

81901 0 2 6935.07

22600 6 2 6949.08

91100 1 2 6970.13

60200 5 2 6993.28

21900 6 2 7079.60

112200 3 2 7308.79

121100 1 2 7319.10

12101 0 2 7359.28

81801 6 2 7375.21

20701 3 2 7421.28

82300 3 2 7557.45

82801 2 2 7667.60

102800 6 2 7679.09

81600 3 2 7704.03

31901 1 2 7763.59

22200 2 2 7769.30

31500 3 2 7821.88

63001 6 2 7833.63

42200 6 2 7835.18

10200 0 2 7843.26

50701 1 2 8063.81

81800 5 2 8097.34

52401 4 2 8186.04

82800 1 2 8197.03

42401 2 2 8247.00

80401 6 2 8248.16

20801 4 2 8257.21

10901 2 2 8310.85

120300 0 2 8324.37

100100 0 2 8405.73

11200 3 2 8474.81

40200 0 2 8737.22

32000 1 2 8743.64

102900 0 2 8815.80

110200 4 2 8861.05

110500 0 2 8878.08

42001 5 2 8904.36

22101 3 2 8919.87

51100 4 2 9051.89

93000 6 2 9052.65

120400 1 2 9068.28

42700 4 2 9093.74

32800 2 2 9169.75

51101 5 2 9234.49

32601 1 2 9367.54

112500 6 2 9436.53

90600 3 2 9437.89

41801 3 2 9517.62

120900 6 2 9523.07

30800 3 2 9671.15

90800 5 2 9679.31

22801 3 2 9680.00

31000 5 2 9727.03

113000 4 2 9732.46
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40901 1 2 9751.84

50500 5 2 9856.51

101500 0 2 9873.32

72301 1 2 9997.78

11900 3 2 10031.45

12300 0 2 10089.36

11401 0 2 10095.29

61900 1 2 10103.06

12401 3 2 10121.58

91500 5 2 10129.57

81000 4 2 10136.43

102300 1 2 10264.06

82900 2 2 10278.51

101900 4 2 10326.14

22000 0 2 10357.56

73001 1 2 10361.15

61101 1 2 10440.00

80800 2 2 10453.65

90801 6 2 10578.79

22001 2 2 10633.44

102200 0 2 10658.25

21201 1 2 10689.07

92300 6 2 10746.40

72201 0 2 10775.70

101100 3 2 10788.68

72000 4 2 10990.97

82601 0 2 11076.53

101200 4 2 11088.22

30901 5 2 11167.72

11601 2 2 11240.98

71901 4 2 11365.53

120800 5 2 11409.23

20900 3 2 11523.92

90700 4 2 11565.70

10801 1 2 11581.11

51000 3 2 11627.53

61700 6 2 11644.12

52100 0 2 11651.52

52200 1 2 11732.38

32700 1 2 11775.21

30701 3 2 11839.67

40101 0 2 11963.07

22700 0 2 12117.67

122600 2 2 12134.00

22100 1 2 12172.03

80900 3 2 12191.29

82101 2 2 12220.22

71801 3 2 12230.96

83000 3 2 12466.56

100700 6 2 12501.94

100200 1 2 12635.91

70801 0 2 12642.68

40800 6 2 12724.32

52501 5 2 12725.82

72901 0 2 13051.21

31100 6 2 13055.53

111700 5 2 13399.78

21400 1 2 13414.61

122300 6 2 15638.21

100400 3 3 2318.57

62000 2 3 2474.90

61301 3 3 3741.03

12100 5 3 4251.73

11400 5 3 4346.61

11101 4 3 4488.71

103000 1 3 4578.34

100900 1 3 4621.75

30801 4 3 4837.39

12000 4 3 4967.12

11100 2 3 4997.93

120700 4 3 5028.88

32201 4 3 5565.37

112700 1 3 5818.93

110800 3 3 5846.94

20300 4 3 5942.67

61601 6 3 5978.33

90901 0 3 6169.97

102000 5 3 6363.07

31700 5 3 6431.29

112900 3 3 6453.47

92800 4 3 6456.72

120100 5 3 6464.14

90100 5 3 6474.96

30600 1 3 6489.54

10300 1 3 6528.49

90701 5 3 6530.09

33001 5 3 6738.29

81700 4 3 6950.31

110700 2 3 7048.48

20501 1 3 7065.64

11801 4 3 7175.10

91001 1 3 7234.84

102600 4 3 7761.46

52301 3 3 7853.54

121900 2 3 8068.21

40900 0 3 8076.14

60301 0 3 8176.39

30700 2 3 8187.53
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83100 4 3 8246.15

30200 4 3 8271.71

92600 2 3 8347.67

81601 4 3 8374.92

30201 5 3 8397.86

42301 1 3 8615.83

40300 1 3 8722.22

62101 4 3 8731.69

71000 1 3 8782.13

22601 1 3 8820.92

30500 0 3 8851.68

72501 3 3 8867.25

91000 0 3 8869.14

53101 4 3 8925.36

112100 2 3 8936.13

32301 5 3 9065.76

31301 2 3 9079.30

121000 0 3 9221.24

82201 3 3 9240.02

82001 1 3 9290.60

82701 1 3 9440.67

92000 3 3 9565.72

52500 4 3 9896.52

40801 0 3 9931.01

60601 3 3 10118.10

122800 4 3 10119.48

51401 1 3 10143.69

110100 3 3 10175.93

61701 0 3 10289.70

121600 6 3 10463.27

111600 4 3 10474.41

82501 6 3 10561.08

10900 0 3 10642.05

62700 2 3 10721.12

30300 5 3 10727.81

30900 4 3 10739.37

62600 1 3 10743.67

81500 2 3 10770.68

12601 5 3 10802.94

31401 3 3 10940.49

111000 5 3 10941.08

112000 1 3 11006.21

30401 0 3 11048.48

10501 5 3 11127.52

102400 2 3 11159.05

40600 4 3 11272.75

61800 0 3 11440.02

40701 6 3 11733.46

21901 1 3 11772.57

31201 1 3 11856.35

62500 0 3 12012.68

102500 3 3 12129.17

22500 5 3 13011.43

32001 2 3 13434.10

70101 0 3 13454.43

31601 5 3 13651.45

62001 3 3 14190.03

92500 1 3 14629.41

90401 2 3 14888.50

11300 4 3 15182.30

122900 5 3 15338.45

13001 2 3 15596.21

122200 5 3 16326.16

12901 1 3 18382.00

11501 1 3 19203.09

21100 5 4 2929.79

31501 4 4 2935.34

11201 5 4 4103.50

71001 2 4 4618.27

32100 2 4 4728.06

11000 1 4 4822.26

61401 4 4 5326.55

51900 5 4 5381.01

72600 3 4 5568.16

11700 1 4 5619.76

60501 2 4 5700.26

101800 3 4 5995.19

22401 6 4 6024.52

100500 4 4 6132.53

91900 2 4 6271.86

21601 5 4 6357.65

62100 3 4 6515.77

41101 3 4 6619.24

21301 2 4 6954.97

71700 1 4 7164.53

10400 2 4 7547.03

80700 1 4 7853.52

121800 1 4 7944.59

21401 3 4 8235.24

21300 0 4 8254.00

80600 0 4 8277.92

121400 4 4 8336.99

92100 4 4 8499.92

80200 3 4 8626.19

81400 1 4 8790.96

60600 2 4 8859.22

73000 0 4 9023.93

41700 1 4 9096.48
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61500 4 4 9178.18

22201 4 4 9370.21

61201 2 4 9444.00

61200 1 4 9550.00

22400 4 4 9613.21

61501 5 4 9773.72

101600 1 4 10075.72

122000 3 4 10303.67

122100 4 4 10319.13

11001 3 4 10438.12

81201 0 4 10657.24

61400 3 4 11009.44

91200 2 4 11214.12

41900 3 4 11266.72

110900 4 4 11616.11

71600 0 4 12040.22

52400 3 4 12056.82

60401 1 4 12072.76

51800 4 4 12748.21

72601 4 4 12783.21

20901 5 4 13115.74

52600 5 4 13144.70

11901 5 4 13288.17

62900 4 4 13580.76

73100 1 4 13788.82

81100 5 4 13829.78

121300 3 4 14070.42

80201 4 4 14906.11

121700 0 4 14950.42

92200 5 4 15262.53

42100 5 4 15603.20

71400 5 4 16602.00

31900 0 4 16623.45

21800 5 4 18109.20

80100 2 4 18144.70

52201 2 5 3047.10

61600 5 5 4342.42

102700 5 5 4855.32

81001 5 5 5063.66

121500 5 5 5313.92

61300 2 5 5491.63

40601 5 5 6543.01

52101 1 5 8780.11

81301 1 5 9470.80

42000 4 5 10777.07

62201 5 5 10849.36

72700 4 5 11932.38

32101 3 5 12790.13

100600 5 5 18549.40

110600 1 5 19036.21

83101 5 5 7758.08

71201 4 6 1949.01

50201 3 6 2259.49

33100 5 6 2489.50

81501 3 6 2586.24

72500 2 6 2914.57

10500 3 6 2940.65

71101 3 6 2984.81

71900 3 6 3090.75

10700 5 6 3129.38

71300 4 6 3161.04

72401 2 6 3168.04

41200 3 6 3230.61

42500 2 6 3283.36

42601 4 6 3391.95

32200 3 6 3473.79

82301 4 6 3498.12

10401 4 6 3515.84

32401 6 6 3632.29

41901 4 6 3679.30

81401 2 6 3693.82

70601 5 6 3784.96

80801 3 6 3906.33

31701 6 6 3908.36

90601 4 6 3927.97

82500 5 6 4028.16

72701 5 6 4031.44

30400 6 6 4032.58

22701 2 6 4089.80

60701 4 6 4197.00

80101 3 6 4217.28

71301 5 6 4221.61

120200 6 6 4320.54

21600 3 6 4348.79

32701 2 6 4355.82

53001 3 6 4364.02

21001 6 6 4697.10

62801 4 6 4756.33

73101 2 6 4788.12

10601 6 6 4793.47

51501 2 6 4864.21

52601 6 6 5008.87

52700 6 6 5017.53

70100 6 6 5021.99

82901 3 6 5044.40

12700 4 6 5083.53

50200 2 6 5092.59

60700 3 6 5100.40
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12600 3 6 5123.74

82400 4 6 5164.11

51300 6 6 5182.47

50400 4 6 5218.88

51201 6 6 5245.02

81701 5 6 5263.93

111100 6 6 5271.48

112300 4 6 5347.82

50501 6 6 5403.08

20200 3 6 5440.37

50300 3 6 5469.67

70501 4 6 5488.74

41701 2 6 5594.78

51701 4 6 5656.58

80701 2 6 5660.55

60901 6 6 5679.28

11701 3 6 5690.87

70700 5 6 5712.07

62400 6 6 5721.92

20201 5 6 5734.62

12001 6 6 5746.21

32801 3 6 5779.28

71200 3 6 5781.93

60100 4 6 5786.05

71100 2 6 5815.95

81900 6 6 5865.02

72200 6 6 5885.20

32300 4 6 5892.58

13101 3 6 5914.72

10600 4 6 5945.28

50401 5 6 5979.30

51801 5 6 5985.89

53000 2 6 5990.11

22900 2 6 6006.62

60300 6 6 6007.32

32500 6 6 6019.52

32400 5 6 6038.22

52300 2 6 6041.00

50301 4 6 6067.86

41001 2 6 6084.42

50801 2 6 6145.49

40100 6 6 6147.36

62901 5 6 6157.54

30301 6 6 6219.75

110400 6 6 6225.91

20101 4 6 6230.24

20301 6 6 6261.27

70401 3 6 6305.87

42801 6 6 6306.18

42501 3 6 6306.79

11301 6 6 6342.20

71800 2 6 6362.39

51901 6 6 6384.81

50901 3 6 6409.23

70400 2 6 6430.30

61000 6 6 6471.84

50600 6 6 6500.65

62300 5 6 6521.56

33000 4 6 6531.06

21701 6 6 6533.75

82401 5 6 6556.92

20100 2 6 6577.50

33101 6 6 6591.85

42800 5 6 6608.32

40501 4 6 6633.01

90301 1 6 6636.00

112400 5 6 6647.24

22301 5 6 6649.33

41401 6 6 6665.39

62701 3 6 6680.95

20800 2 6 6694.80

11800 2 6 6709.46

101400 6 6 6749.00

61901 2 6 6850.93

70600 4 6 6888.72

31400 2 6 6928.61

90200 6 6 6934.61

70901 1 6 6953.06

20500 6 6 6955.67

42900 6 6 6964.48

52000 6 6 7004.94

41000 1 6 7022.81

111300 1 6 7184.94

80400 5 6 7189.13

20601 2 6 7220.09

111800 6 6 7356.14

42701 5 6 7549.37

40401 3 6 7590.46

42101 6 6 7674.87

91700 0 6 7754.03

72300 0 6 7856.97

80500 6 6 7918.78

51600 2 6 7988.12

90501 3 6 8015.60

51601 3 6 8100.28

72101 6 6 8242.07

30100 3 6 8244.63

52900 1 6 8245.67
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31800 6 6 8251.53

21500 2 6 8264.49

101300 5 6 8398.14

50100 1 6 8442.36

60801 5 6 8524.53

82000 0 6 8547.57

92900 5 6 8563.30

51001 4 6 8603.60

41601 1 6 8613.07

82200 2 6 8622.33

41300 4 6 8837.74

21000 4 6 8873.38

50101 2 6 8939.00

80601 1 6 9056.11

63000 5 6 9131.25

61801 1 6 9183.89

82100 1 6 9319.08

10201 2 6 9521.35

51200 5 6 9565.49

72100 5 6 9645.86

21200 6 6 9646.40

60900 5 6 9686.87

32900 3 6 9740.07

31001 6 6 9742.37

122700 3 6 9751.40

72900 6 6 10082.08

20400 5 6 10176.79

41400 5 6 10480.19

80901 4 6 10758.22

122500 1 6 10803.28

70701 6 6 11190.97

120500 2 6 11274.07

42400 1 6 11401.58

91600 6 6 11445.69

90101 6 6 11537.97

121200 2 6 11635.42

123000 6 6 11738.51

22501 0 7 7035.14

72800 5 7 7779.92

112600 0 7 18251.88

41201 4 7 23519.51


