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1 Executive Summary

The Aviation System Capacity (ASC) Office at NASA Ames is engaged in several
activities that require non-real-time modeling of human behavior and automation in
ATM. These activities are supported by the AATT Project and by the Quiet Aircraft
Technology (QAT) Program. Within the AATT / Benefits and Safety Assessments
(B&SA) Element, the M&S Task Area seeks to provide the high-fidelity modeling
capability required to assess new tools or concepts for the NAS. The objective for M&S
is to provide the ability to perform multi-objective assessments of Distributed Air-
Ground (DAG) concepts. Within the QAT / Community Noise Impact Project, the Noise
Mitigation Controller Tools (NMCT) Element has an objective of demonstrating, via
laboratory simulation, the effectiveness of a controller decision support tool (DST) for
low noise approach and departure procedures. Each of these activities will utilize
components of an integrated suite of ATM modeling tools.

The modeling capabilities developed within AATT and QAT will also serve as the basis
for future NAS simulation environments such as those proposed within the Aviation
System Technology Advanced Research (AvSTAR) vision. Modeling tools developed
will be used to conduct system-level assessments of advanced ATM concepts. Thus, the
M&S framework must be flexible to promote re-use for a broad range of NAS concept
evaluations and/or trade studies.

All of the activities described require non-real-time modeling of human behavior and
modeling of human behavior and automation was in the early stages of development.
Further, given the immense importance of human factors/automation in the design and
operation of any proposed advanced ATM concept, this category of modeling was found
to require urgent attention. For AvSTAR assessments, NASA also sees a requirement to
develop human "team modeling" capabilities. The first steps in building such a capability
are to determine the human constraints on the ATM system, to assess the state-of-the-art
in human behavior modeling, and to formulate an approach for developing human
behavior models, which can be integrated with the ATM modeling tool suite.

The overall purpose of this study is to provide NASA with the background information
required to identify key elements of human behavior automation modeling and an
approach for a phased implementation of these elements into a non-real-time modeling
environment, which includes humans and automation in ATM.

This report is broken into four major sections and five appendices:

This first section gives background and study requirement information.

The second section describes the components involved in the representation of human
behavior in the ATM system.
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The third section describes our assessment of the state-of-the-art in human behavioral
modeling.  It includes the evaluation of simulations and programs inside as well as
outside the ATM realm such as in industry, academia, and the military.  We want to
ensure that NASA is aware of the evaluated “best of the breed” both inside and outside of
its resident domain.  This third section also includes our assessment of the simulations
and programs evaluated.  Finally, in section three, there is a brief description of some
relevant technical “tech” feeder programs occurring in the modeling and simulation
world that we believe stand to impact the way the NAS system in modeled and analyzed.

Section four describes and illustrates our recommendation for a roadmap to integrate
existing models and programs into an ATM Modeling Environment.  We describe our
“toolkit” approach with associated features and issues, and describe what the “pieces”
are.  Also included is a rough timeline for accomplishing the proposed integration.

In addition to the four report sections, we have also provided five appendices.

Appendix A contains a list of acronyms that appear in this report.

Appendix B contains a list of references used by the authors in researching and compiling
this report.

Appendix C describes two “use cases”, two examples of the human behavior matrix
presented in section two filled out in lower and higher fidelity formats, to illustrate the
practical difference in changing the level of fidelity of a model of human behavior.

Appendix D contains more detail on issues involved in the modeling of human behavior.
Again, it is a rich and complex field, and the purpose of the appendix is to begin to give a
reader appreciation for the magnitude of choices/details when deciding on a particular
representation of human behavior for a given model in a given domain.

Lastly, Appendix E contains a brief description of general techniques for modeling
human behavior. Although the focus of this study was not to provide an academic
discussion of the specific computational or mathematical techniques being employed in
the specific simulations and programs, we thought it would be useful to NASA Ames to
be able to recognize key terms and concepts with regard to some of the various ways that
human behavior is modeled.  We have provided a brief description of these methods,
along with a fairly simplified view of each method’s pros and cons.  It is important to
understand that the modeling of human behavior is a task of extreme complexity and
magnitude, and that there is, simply, “more than one way to skin a cat.”  One of the
reasons why the field is so rich with research is because there are so many different ways
to approach the challenge of modeling human behavior.

With this report, NASA should be able to understand what areas require more research as
well as what areas do not apply to future ATM modeling and therefore no further
investigation.
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1.1 Background

The representation of human behavior is a rich and complex topic.  As a definition of
human behavior representation (HBR), we will use the one offered by Pew and Mavor in
Modeling Human and Organizational Behavior, that is, a “computer-based model that
mimics either the behavior of a single human or the collective action of a team of
humans.”(reference 13)

There are many ways of viewing the challenge of representing human behavior. For
instance, one’s goal may simply be to simulate/emulate the effects of a human decision,
without providing much detail on the cognitive events, which take place that give rise to
that decision.  In other cases, specifically modeling the cognitive processes may take
center stage.  In yet other cases, modeling human performance (e.g. visual and auditory
perception, motor skills, etc) may be what is of most interest.

Before any attempt can be made to represent the human behavior resident in any domain,
some thought must be given to how to frame the problem.  More specifically, one can
view the ultimate representation as a set of people, functional behaviors, and processes,
or one may choose to view the representation as a set of flows and controls.  Each
framework gives rise to unique modeling considerations and requirements, and it is our
view that one should take multiple approaches in specifying the human behavior before
any attempts are made to “code” it in a model.  In the end, choices will have to be made,
so as not to give rise to an inordinately complex model.  There will be overlaps and
redundancies in taking the time to approach the problem from more than one framework,
but it will also help to ensure that key components of the desired human behavior are not
missed.

For example, if one chooses the first framework, the knowledge engineer (KE)
responsible for creating the model should try to address (at a minimum) the following
questions with a subject matter expert:

§ Who are the people/actors in this system?
§ What are their primary behaviors (or functions)?
§ What are the underlying processes involved in the generation of these behaviors

(e.g. communication, motivation, information processing, etc)?

In contrast, if the latter framework is chosen, the KE should try to address (at a
minimum) the following questions:

§ What entities are moving from place to place?
§ What are the “roadways” and /or other limitations to movement?
§ Who is directing or controlling flow?
§ For those directing or controlling, what are the cues or measures they pay

attention to?
§ If the physical analogy of a queue is appropriate, what is the capacity of that

queue?
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§ What determines how long does an entity stays at one location before moving to
the next?

§ Is the process discrete or continuous?

There is also the issue of level of resolution desired in a specific representation of human
behavior.   In a nutshell, the level of resolution of a model or simulation describes its
level of detail in representing some aspect or aspects of human behavior.  The higher the
level of resolution, the more detail which is contained, and generally the larger and
slower running the model. There is no set one answer or way to resolve this issue. There
are pros and cons to increasing or decreasing the level of fidelity of a given
representation of human behavior.  How much fidelity is “required” for a specific
analysis is situation and question dependent.  It is becoming more common in the
modeling and simulation (M&S) world to allow for multiple levels of resolution, either
within one model, or by allowing a way to transition smoothly between models of
different levels of resolution.  When we discuss relevant M&S technical or “tech” feeder
programs, we will discuss techniques and methods, which may be of use in an ultimate
modeling toolkit of human behavior in the Air Traffic Management (ATM) realm.

1.2 Requirements of this Study

SAIC shall participate in a kick-off meeting at NASA Ames to develop an understanding
of the automation tools, concepts and procedures that may be evaluated in ATM concept
simulations.

Task 1:  Identification of Human Components in ATM System Modeling
SAIC shall identify and document the human roles and behaviors that must be
represented within a system-wide model of the NAS.

Task 2:  Assessment of State-of-the-Art in ATM Human Behavior Modeling
SAIC shall survey existing ATM human behavior/automation models to identify those
models that can be applied within a non-real-time modeling environment for conceptual
evaluation of ATM tools, procedures and concepts. This survey shall extend the previous
survey conducted for AATT (reference 6) by providing newer and/or updated
information in the particular domain of human behavior modeling.  The survey shall
identify both strengths and limitations of the models including their known range of
applicability, ease of use, availability to NASA, and computational requirements. Any
human behavior models that could also be used within a real-time simulation
environment should be noted. The survey shall also identify human behavior models
from other fields [e.g. models used by Defense Advanced Research Project Agency
(DARPA), Department of Defense (DOD), Department of Transportation (DOT), and
other agencies] that could be adapted for ATM applications. The survey should include a
discussion of the simulation frameworks that are used in conjunction with current human
behavior models.
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Task 3:  Roadmap for Integrating Human Behavior into an ATM Modeling Environment.
Based on the results for Tasks 1 and 2, SAIC shall develop a phased implementation plan
for automating human behavior within a non-real-time, ATM modeling and simulation
environment.

1.3 Modeling Assumptions

In any discussion about the modeling and/or simulation of a domain, one must first
address which assumptions, if any, are to be considered.  These assumptions will help
guide the development of the M&S towards maximum utility and usefulness, while at the
same time, assuring that the actors and functions in the given domain are modeled as
accurately and as efficiently as possible.

SAIC expresses its thanks to Ms. Sandy Lozito of NASA Ames, for supplying the
following modeling assumptions.  It was important to us to record/address the specific
assumptions that NASA Ames believes are appropriate to the modeling of the National
Air Space (NAS) domain.  We understand that the list of assumptions is a dynamic list,
growing and responding to new realities in the domain. As a case in point, the incidents
in the United States (U.S.) on September 11, 2001 certainly will have an effect on the
first modeling assumption listed below, namely if the number of aircraft in the NAS will
in fact increase as quickly as once thought.  In any case, SAIC wishes to extend their
deepest sympathies to all who were involved or impacted by the tragic events, but at the
same time, expresses their confidence in the industry and in the eventual truth of the first
assumption listed below.

§ Number of aircraft in NAS is rapidly increasing (thus, emphasize capacity)
§ All three parts of triad will be involved in these changes (Air traffic controller,

ground controller, and pilot)
§ Demographics
§ Some shift in roles and responsibility, including dynamic shifts
§ Changing and dynamic airspace structure (e.g., dynamic resectorization)
§ More flexibility for the users
§ Better weather prediction and distribution of weather information
§ Better data and use of Special Use Airspace (SUA)
§ More aircraft intent will be available
§ Intermodal interface considerations
§ Considerations for the Small Aircraft Transportation System (SATS)
§ More data link communications (air-air and air-ground)
§ Air to air data sharing available
§ Use of new ground and airborne automation tools (e.g., conflict prediction &

resolution)
o Ground conflict probe
o Airborne (Cockpit Display of Traffic Information (CDTI)) and probe
o Trajectory negotiation between air and ground.
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In addition to specifying model assumptions, it is also helpful to consider what the
overall process is involved in specifying modeling scenarios.  Again, SAIC wishes to
thank Ms. Sandy Lozito for supplying her priorities.  The process is described below.

q Consider the research question
q Consider the technical and logistic constraints (e.g., computing power, staffing)
q Decide which facets of the research questions can be addressed in a particular

scenario
q Use background research to further refine those questions
q Make basic decisions for scenario development (e.g., traffic density, number of

operators)
q Consider communications requirements (if any)
q Begin development of the scenarios
q Conduct any early evaluation of the scenarios with users
q Check data collection
q Make appropriate modifications, refine scenarios.

 ````
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2 Identification of Human Components in ATM System
Modeling

2.1 Top Level Purpose

As a key element in analyzing human behavior models we have created a matrix to
represent different types of human decision-making. Use of such a matrix allows
categorization of the decisions, which need to be modeled in the NAS domain. It also
provides a uniform mechanism by which to evaluate different human behavior modeling
systems and techniques. This section describes the matrix and its use.

2.2 What is Human Behavior Representation?

Human Behavior Representation (HBR) again, is, at its most succinct, the representation
of the decision-making processes and decision-related actions of humans represented
within a simulation. HBR can cover a broad range of behaviors, from the perceptions and
actions of an individual such as a single air traffic controller up to the collective behavior
of an entire command and control system, such as the entire NAS. HBR also represents a
breadth of fidelities, from simple models which make entities appear to be behaving
correctly when viewed from afar, to detailed models of human sensory and cognition
processes.

HBR is closely related to workload modeling, human factors modeling, and
understanding human behavior processes. It is important to emphasize that each one of
these techniques has its own important uses, its own community of experts, and its own
challenging problems. However, our task is to focus on computational models that can
represent, or emulate, human behavior relevant to the future-NAS analysis problem.

HBR is different from workload modeling in that the emphasis is on producing realistic
behaviors, not on measuring the effort it would take for humans to perform. This differs
from human factors modeling in that HBR usually does not attempt to measure effects
such as decreasing performance with fatigue, or the factors that influence the rate of
fatigue or recovery there from (though it may represent such factors as part of a model).

HBR varies from understanding how human behavior works because the emphasis is on
producing realistic behavior, by computational means. The computation models used
need to mirror the results of human decision-making, but may not match the actual
cognitive processes used by human. If people were performing a task by an unknown
process, then an accurate description of human behavior must include that task. However,
we could not produce a computationally realizable representation of such human
behavior. On the other hand, if linear programming (LP) produced a good approximation
to the output of a person’s planning task – regardless of whether or not we can describe
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how they actually did the task - then LP is likely a good enough representation of the
behavior, even though people clearly never execute LP in their heads.

Our focus, therefore, is on computational techniques for simulating the mission-relevant
externally observable behavior of individuals or groups of people.

Many engineers automatically assume that modeling for HBR is limited to using
numerically based techniques, such as control theory or stochastic dynamic
programming. We do not. Many computer science or artificial intelligence techniques
operate exclusively with symbolic, non-numerical data (think of a compiler, that takes in
computer programs in a high level language, and outputs equivalent programs in a much
simpler language), and we will feel free to examine any such techniques that seem
applicable.

Many engineers and computer scientists also automatically assume that respectable
computational procedures are deterministic, and that the role of random numbers is
limited to “random number seeds” in repeated “Monte Carlo” simulation runs. We do
not. Randomized algorithms are sometimes the most efficient known approaches even to
“hard-core” mathematical problems (think of the simple Miller-Rabin procedure to test
an integer for being prime or composite, which is many orders of magnitude faster than
the best known deterministic algorithm). Randomized algorithms are also a standard way
of avoiding “threshold effects”, or artifacts of behavior that occur due to repeatedly
accessing the same conditions.

2.3 Behavioral Matrix

In order to characterize and assess both the required elements of human behavior
modeling and the capabilities of existing tools and techniques, we developed a HBR
taxonomy matrix. This matrix is a top-level orientation tool, suitable for multiple diverse
domains - military, NAS, or economic modeling. We start with a very abstract framework
that is oriented toward computable representations of human behavior, and use it as an
organizing framework to categorize our knowledge about the NAS and related HBR, and
to surface issues in future modeling. Figure 2.3-1 shows the form of the matrix. Any
behavior representation requirement or approach occupies some portion of the two-
dimensional (2D) space described by the matrix. Consequently, the matrix identifies
taxonomies by identifying HBR elements, which cluster in the same regions of the
matrix.
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The HBR taxonomy matrix contains four rows and four columns. The rows of the matrix
represent the depth and flexibility of the behaviors, while the columns represent the
temporal dimension of the HBR model – from reacting to current situations to
anticipating and planning for future situations. The four rows are roughly hierarchical,
where each is situated in the context from the next lower, more fundamental level. The
top two layers are commonly described as “canned behaviors”, while the lower two
layers represent more dynamic, less scripted and therefore more  “human-like” behavior.

2.3.1 Standard Reactions

The topmost row represents canned short-term responses to short term contingencies.
Examples from the NAS include the following: a pilot will immediately abort the landing
if an obstacle is seen on the runaway, and a pilot will immediately take evasive action at
altitude if a midair collision suddenly appears imminent. No thought is required as to how
to manipulate the controls; no debate as to proper course of action is permissible. They
take action immediately, and they do it roughly the same way every time. Similarly in the
military domain, if a line formation of tanks traveling down a road is attacked from the
air, they will immediately begin firing back and simultaneously move into a herringbone
formation. No discussion, no problem solving, no orders.

Standard reactions can be modeled by a number of techniques including procedural code,
rules and finite state machines (FSMs) (see the following section).

2.3.2 Routine Performance

The next layer contains the standard, long-term “canned” behaviors. This type of
behavior typically represents routine performance of tasks, which do not require
anticipation of dynamic situations. Route following is an example of such a task. Route
following involves a long-term series of steps and so can model the actions of a pilot or
driver in following a route, however routine performance stops short of reacting to

Current
Situation

Perception

Future
Situation
Projection

Option
Generation

Outcome
Evaluation

Routine
Performance

Standard
Reactions

Judgement Calls,
Problem Solving

Staff
Work

Top Level HBR TaxonomyFigure 2.3-1 – Top Level HBR Taxonomy
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dynamic situations, for example recognizing the need for rerouting, generating and
negotiating a new route based on weather conditions.

FSMs are the most common way of implementing routine performance. Hierarchical
FSMs, wherein each state can contain a lower level state machine, are a common way to
implement the dynamic interleaving of standard reactions and routine performance.

2.3.3 Judgment Calls

We describe the next two rows in the matrix in reverse order in order to better draw out
the distinctions between them.

The most difficult level in the HBR matrix represents judgment calls, problem solving
behavior, and non-doctrinal behavior. It is the unavoidable foundation of behavior as it
reflects most completely the full range of possible behaviors on the part of human
participants in a scenario. The wide range of possible human reactions is typically
constrained in software based on judgment calls made by software designers to exclude
unlikely outcomes to maintain computational tractability, however in many applications
(such as safety studies) it is exactly the outliers in behavior that are of the most interest.
Unfortunately, such non-routine behaviors present a combinatorial explosion of
possibilities that defeats HBR techniques such as classical control theory, FSMs, decision
table lookup, stochastic dynamic programming and LP.

Our experience in the DARPA Command Forces (CFOR), Advanced Synthetic
Command Forces (ASCF) and COAA (Course of Action Analysis) programs indicate
that it is indeed possible to efficiently model some such behaviors through the technique
of hierarchical constraint satisfaction (CSP). The fundamental goal of CSP is to exploit
the combinatorial explosion at runtime, rather than overcome it at design-time.

2.3.4 Staff Work

In situations where dynamic decision-making is made, there are a large number of more
routine follow-up decisions to be made. For example, once the decision has been made
not to delay traffic but route it one way or another around severe weather, then the
particular routes must be computed, waypoints identified, and all the new plans
communicated to the effected aircraft or airports, and so on. After the core decisions are
made, then the follow-up is comparatively straightforward and procedural, hence the term
“staff work.”

This level of processing is typically implemented by basic LP solvers (after the
judgmental processes have designed an LP to be solved), simple top-down formatting
into multiple copies of interrelated orders, etc.
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2.4 Matrix Application Examples

2.4.1 NAS Upgrades

We will illustrate the matrix by describing how planned upgrades to the actual NAS fit
into it, based on our Task 1 review of the field. In this case we are not representing NAS
simulation; rather, we are representing the more active, less routine decision-making on
the part of all NAS participants that are being postulated to improve NAS performance by
relaxing the operational rigidity of the current system.

The leftmost, heavily crosshatched four regions represent the NAS areas that are getting
the most emphasis. The center, lightly crosshatched three regions represent a lesser
emphasis.  The rightmost, lightest two regions represent the least emphasized.

The upgrades related to improved navigation aids, Global Position System (GPS) links,
precision approaches, etc. fall into the box for pilots’ immediate perception of the current
situation (i.e., their precise physical location) during routine performance. Similarly, an
aircraft monitoring nearby aircraft in order to avoid conflicts falls into the box for current
situation perception for standard reactions (though this may also include anticipation of
future conflicts, thus pushing it toward the Judgment Call category.  This change alters
the ATM command structure, which used to rely on the ground-based controllers to
detect conflicts and inform the aircraft of the problem and what to do about it.

2.4.2 Prior NAS Modeling Emphasis

We further illustrate the matrix by describing how prior NAS human behavior modeling
fits into it, based on our Task 1 review of the field.

Focus of NAS Upgrade Plans

Current
Situation

Perception

Future
Situation
Projection

Option
Generation

Outcome
Evaluation

Routine
Performance

Standard
Reactions

Judgement Calls,
Problem Solving

Staff
Work

Figure 2.4.1-1 – Focus of NAS Upgrade Plans
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It is important to note that much of the modeling of humans in prior NAS models was
human workload modeling, or human factors modeling. This is of course distinct from
the HBR of interest here.

Network based queuing simulation models have dominated HBR modeling for the NAS.
This is because even the most casual observer can tell that airplanes queue up for gates
and runways, and even the simplest queuing simulations already give valuable insight.
This appears to have set the cultural direction and preferred approach. Thus, the basic
analysis of the NAS can treat the dynamics of queuing as primary, and modeling
judgment of C3 elements can be handled secondarily.

This places most of the prior NAS work on the second row, with conflict detection and
basic route planning extending it to the second and third columns. Simulations that
include simulation time conflict detection and two- or three-way maneuvering are placed
in the first row.

2.5 Military Modeling Emphasis

Military modeling of HBR has from the very start been forced to deal with judgmental
aspects to at least some degree, and this has set the tone and preferred approach for that
community. The reason is that maneuvering in the face of the enemy – and hence the
high-pressure replanning of maneuvers when the enemy disrupts the plan – has been a
dominant military problem for hundreds of years, and has been included in at least some
form in every military model. In military operations there is no “steady state,” that is,
operations are based on continual disruption and novel circumstances. This differs from,
for example, disruptions caused by weather in the NAS. While severe weather systems
are large semi-stochastic perturbations to the NAS, they are not intelligently and
maliciously attempting to maximally disrupt the NAS, and they are not intelligently
bluffing and out-guessing the controllers. An intelligent opponent does all these things,
and thus stresses the military C3 system in ways that make intelligent judgment a primary
factor to be modeled. Thus, the blue crosshatched areas in the matrix below represents

Current
Situation

Perception

Future
Situation
Projection

Option
Generation

Outcome
Evaluation

Routine
Performance

Standard
Reactions

Judgement Calls,
Problem Solving

Staff
Work

Prior Focus of NAS HBR Modeling
Figure 2.4.2-1 – Prior Focus of NAS HBR Modeling
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this aspect of military modeling, in which our team has made significant contributions to
the state-of-the-art.

Combat modeling often uses a simplification of attrition known as The
Lanchester/Osipov equations. Even with this simplification, which uses aggregated
results rather than playing out of entity-by-entity scenarios, more lines of code are
devoted to representing human judgment and planning than to any other aspect of
modeling. The moment-by-moment movement, formation keeping, firing at the enemy,
avoiding enemy fire, and reaction drills to unexpected attack, and so on are critical to
military modeling. However, they tend to all be either fairly short-term actions, or the
routine execution of orders from immediately above. Thus, the two red crosshatched
areas in the matrix.

2.6 Expanded Matrix

Having defined the basic matrix, we expand its utility by adding two additional
dimensions:

q Multiple layers of resolution. Each of the regions of the basic matrix can be modeled
at varying levels of detail, and so the matrix should take into account the level of detail of
the human behavior model. This also includes the level of aggregation of behavior, for
example, modeling the behavior of a single controller vs. a TRACON in the aggregate.
This latter element includes both more detailed breakdown at a moment in time, as well
as resolving differences from one time to another (e.g., dynamically reorganizing sectors
and other C3 relationships).

q Resolution into subtypes of behavior. This represents how various elements of
behavior interact with each other. This raises issues of how boxes at different levels
of complexity and resolution are to communicate with each other.

Current
Situation

Perception

Future
Situation
Projection

Option
Generation

Outcome
Evaluation

Routine
Performance

Standard
Reactions

Judgement Calls,
Problem Solving

Staff
Work

Military HBR EmphasisFigure 2.5-1 – Military HBR Emphasis
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2.6.1 Multiple Layers of Resolution

A simple representation of multiple layers of resolution is as follows.

This added dimension deals with the level of detail applied to a particular decision model.
Different models may occupy the same space in the two dimensional matrix (e.g.,
standard reactions/current situation perception) but represent different levels of fidelity
and complexity, from static reaction (always take exactly the same reaction to a particular
stimulus) to equation-based algorithmic approaches to cognition-based models. This is a
fundamental modeling issue, and it appears repeatedly in the field of behavior
representation. It is sometimes described as the difference between “real models” and
“performance models,” between detailed high-resolution models and abstract low-
resolution models, and so forth. In behavior models this applies to how much of the
internal decision-making processes of the simulated actor are modeled to achieve an
overall acceptable transfer function (that is, appropriate response to various stimuli).

As an example, consider a model of pilot behavior during taxiing. Taxiing an aircraft
from a gate to a runway can be represented multiple ways. In a high fidelity case, the
model may include the following elements:

q A full 4D continuous terrain, so that aircraft can bump up and down on joints of the
taxiway, and get off center, etc.

q Modeling the aircraft orientation, velocity, mass, braking power, thrust of each
engine, moments of inertia, etc.

Routine
Performance

Standard
Reactions

Judgement Calls,
Problem Solving

Staff
Work

Current
Situation

Perception

Future
Situation
Projection

Option
Generation

Outcome
Evaluation

Complexity

Multiple Layers of Resolution and Variability

Static

Simple Eqtn, Small FSM

Figure 2.6.1-1 – Multiple Layers of Resolution and Variability
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q Modeling of the pilot’s perception of ground operations and other local aircraft
q Modeling the pilot’s operation of the aircraft’s controls to achieve desired locations,

orientations, velocities, etc.
q Communication of text requests, orders, and answers on different frequencies,

including possible miscommunication due to radio interference or misunderstandings.

However, for many applications this level of detail is far in excess of what is required and
many of these elements can be eliminated or simplified. For example, the radio model
could be replaced with a simpler random communications error model.

At the other extreme of fidelity, control of a taxiing aircraft could be represented as a
networked queuing model, where aircraft move from node to node in the network and the
runway is a server with fixed cycle time and capacity of one aircraft. The modeling
choice, of which overall behaviors are to be broken down into sub-system and controller,
or viewed as a single system, is omnipresent.

In addition to the core behavioral representation, there are other elements which push
particular models into higher planes of complexity in the matrix. One example is:

Dynamic C3 Relationships: This area models how the patterns of communication in
collaborative problem solving change during problem solving. Modification of C3
relationships as events play out is not unusual in combat, as in a hasty fix-and-flank
maneuver where two new, temporary C3 elements are spawned. It is to be expected in
some future NAS concepts, where dynamic reorganization of sub-sectors is planned. The
key technique here is to represent the functioning C3 organization as a data structure,
which the model reads (or builds) and executes, not as part of the software architecture of
the model. A useful analogy is a program to simulate queuing networks. One would not
usually want to hard-code any particular network into the software, but must develop data
structures (nodes, edges, networks) that can be built up at run time to represent any
particular structure, then executed. This necessitates a more abstract style of
programming, where the “model of the network” is not so much a model of a particular
network as a toolkit for assembling and running different models.

2.6.2 Decomposition into Behavioral Subtypes

Another axis along which to categorize behavior deals with the nature with which
behaviors interact with each other (and in some cases such as agent-based systems, in
which sub-behaviors interact to form a single behavior). This distinction is most
significant in lowest row of the matrix, judgmental behavior, which in some ways
represents the richest repertoire, even though it is the least amenable to closed form
numerical analysis. Behavioral sub-types include:
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2.6.2.1 Collaborative behavior

This is the behavior of groups, not a single decision maker. In this case, multiple
decision-makers are each working on their own individual goals, however they are
working in concert towards a larger goal. The set of decisions, and the relationships
between them, are generated and asynchronously processed by different decision-makers,
but constrained to be consistent with each other at those points where they overlap. An
example would be multiple controllers in the same center, working within the bounds of
overall flow constraints and respecting each others’ capacities.

With one decision maker, the algorithm can pretty much work through the problem in the
order it chooses, never worry about deadlock or race conditions, and only backtrack (that
is, consider another problem solution) when it “decides” that its own sub problem
requires it using in any backtracking approach that looks promising.

All these assumptions fail with multiple decision-makers, necessitating not only a
distributed solution procedure but also a public protocol for communicating preferences
and partial solutions between agents. The required information is somewhat akin to the
numerical LP solution procedure of Danzig-Wolfe decomposition. An instance of such an
information exchange among multiple collaborating agents is the Command and Control
Simulation Interface Language (CCSIL) initially designed by MITRE Corporation in the
STOW project then implemented and extended by SAIC under the DARPA CFOR
project (also part of STOW).

One can categorize human behavior models as to how they collaborate.

2.6.2.1.1 Cooperative behavior
The fundamental difference between unitary and collaborative behavior is the need for
separate agents to reconcile their different suggestions for how to solve a common sub-
problem.  For example, in any collaborative process,  there must be some way of
resolving the conflict when two  parties suggest different values for a variable. The way
of resolving this problem is different in a purely cooperative  system, where both know
that both have exactly the same  utility function and have every reason to give accurate
descriptions of their perceptions and options and goals, and a competitive system, where
these assumptions do not hold and different resolution techniques must be used.

In cooperative problem solving, the generic framework for sharing subproblems can be
filled in by particular mechanisms that presume a degree of “trust” and mirror-imaging
between the agents working on the subproblems. One exteme would be to simply take
whichever minimizes the local constraint violations, regardless of which party proposed
it. Similarly, two agents laying out a sequence of actions could utilize a “max-max”
variant of Von Neumann’s “mini-max” algorithm (more likely “max-average-max-
average”, considering that variables like weather are uncertain, so the outcomes are
uncertain).
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2.6.2.1.2 Competitive behavior

Competitive behavior is the flip side of Cooperative behavior. It is the case where there
are multiple independent decision-makers who are working against rather than with each
other rather. In this case, each decision-maker must be prepared to plan not against a
static or benign situation but rather in an environment designed to thwart achievement of
its goals. In military combat this is the classic situation of enemies fighting each other. In
the NAS domain this could represent the behavior of multiple airlines competing for
resources such as departure slots.  Mechanisms such as a synthetic market could be used
for coordinating competitive planners in a such a situation. They could also be applied in
very short-term competitive problems, as exemplified by the market-clearing mechanisms
proposed for computer operating systems.

In military analysis, both real-world and simulation, planning under these conditions is
handled by analyzing the various outcomes that could occur for each future action on the
part of the decision-maker and consequent possible reactions on the part of the other
decision-makers. Having enumerated the tree of likely outcomes, the decision-making
agent sets off down a path that promises to offer a good probability of an ultimately
successful (from its perspective) outcome. In military terms this type of adversarial
planning is called evaluating “branches and sequels,” a computational DST along these
lines was demonstrated by SAIC under the DARPA COAA program. The extreme
version is the original form of Von Neumann’s famous “mini-max” algorithm for playing
competitive games, which relies on the zero-sum assumption (again, more likely
“minimum-average-maximum-average”).

One can categorize human behavior models by their ability to handle competitive
situations through planning.

2.6.2.2 Non-doctrinal solutions

Non-doctrinal solutions are the “out of the box” solutions that can be generated by
creativity without regard to rulebooks or standard procedures. These are the toughest
cases to model in a computer under many behavioral modeling paradigms. Most behavior
models, be they rules or state machines, can represent arbitrarily complex sets of standard
procedures – that is, solutions that have already been thought of – however they will not
come up with solutions on their own. Under most paradigms a simulated airplane spotting
a runway incursion will only consider aborting its landing if the behavioral developer has
explicitly programmed this as one of the plane’s options; otherwise the plane may
continue to land because it doesn’t know what else to do. Certain behavior
implementation methodologies can come up with novel solutions, CSP and learning
algorithms such as neural nets among them.

One can categorize human behavior models by their “creativity”, that is, their ability to
generate novel non-doctrinal solutions.
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2.7 Architectural Considerations

The matrix, especially with different levels of resolution, presents a daunting set of
possible behavioral interactions, using quite dissimilar techniques, both within and
between agents. Further, the level of resolution may need to be changed, on a component-
by-component basis. This might be necessary to assemble a custom simulation to meet a
specific, short-term study problem, where a huge monolithic model would be
prohibitively difficult to tailor. It might even be necessary to do so automatically during a
run, in order to use sophisticated representations when a sophisticated behavior was
required, and conserve resources by using much simpler representations whenever they
sufficed.

As is typical with software, making one module (behavior) variable necessitates
adaptations in the surrounding software with which it interacts. Thus, having a modular
toolkit to represent human behavior is likely to have a spillover effect that pushes the
other, purely physical or purely Graphic User Interface (GUI), components toward a
more modular and object-oriented design. There are other reasons for having a “toolkit”
approach to non-behavior components, as well. A management process such as the High
Level Architecture (HLA) and its supporting Real Time Infrastructure (RTI) software is
available precisely to manage such real-time interactions between modules. It could be
used not only for physical interactions (its original purpose) but also for the shared
variables and subproblems of collaborative behaviors.

There is one additional possible axis along which to categorize behaviors, which is not
treated in depth here. This is the notion of implementation architecture and deals both
with the software structure of a behavior itself as well as its relationship to other models.
Within simulation systems behaviors can be the entire model, can be separated out as
agents distinct from the rest of the models, which compose an entity (as in the AIRMM
architecture) or can be integrated at a peer level with other models.

One aspect to consider is future adaptation. In a simulation with a long anticipated
lifespan, it will probably be insufficient to adopt any single level of representation as
permanent. For some applications, it might be sufficient to model an airplane on the
ground performing a “Get to the gate” behavior as simply progressing through a queuing
network to arrive a gate, pausing however long is required at each step. In a different
application, where the gate is assigned not well in advance but at the last minute, a very
different algorithm (possibly including choosing the gate to use) would be employed. To
avoid re-writing the software at each run, it would be necessary to have a uniform
interface to the behavior, but differing methods of carrying it out in the simulation. This
is pretty close to the definition of an object, and it would be greatly facilitated by the
toolkit approach suggested above.
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3 Assessment of State-of-the-Art in ATM Human
Behavior Modeling

3.1 Existing Models and Projects in Human Behavior

The following are very brief descriptions of the individual simulations or modeling
technologies assessed as part of this study.  This is by no means a complete list of all
human behavior modeling projects, inside and outside of the ATM domain, but these
models or modeling architectures were chosen either for how well they represent the
ATM domain, or widely recognized state-of-the-art in more human behavioral modeling,
or both.

Following the list of descriptions is a chart that displays the assessment of these models
on five measures: ease of adaptation, speed of operation, breadth of human behavior,
suitability to available computing infrastructure, and ease of extension to probable future
needs. (Table 3.1-1)

ACT-R (Adaptive Control of Thought, Rational) – A cognitive architecture, and fully
implemented simulation system that models problem solving and learning, and has been
applied to complex ATC.  Production system architecture with network-like associations
among working memory elements.  Maintains a declarative/procedural memory
distinction, and new production rules are learned by analogy through the process of
“chunking.”  Uses a conflict resolution mechanism based on probability of success, value
of the goal, and cost associated with firing the production rule.

Apex – Computer simulation of human cognitive, motor, and perceptual processing.
Allows users to create, run, and analyze simulations of human-machine systems. Good
for formal task analysis and “what-if” analysis as well as rapid processing of
experimental human performance data. Able to represent a broader range of human
behavior than Total Airspace and Airport Modeler (TAAM) (See below) and SIMMOD.

CFOR (Command Forces) – A constraint-based real time simulation model of combined-
arms operations for Army company teams. Represents the goals and constraints of a
command decision process as a set of decision variables to be optimized subject to certain
constraints (e.g., determine a route to get from Point A to Point B that uses the least time
and fuel subject to constraints in moving through Area Z and minimum speed of Y).
Takes into consideration the goals and constraints of subordinate units, communicating
with them through a series of defined command and status messages.

COAA (Course of Action Analysis) – Constraint-based tool to support rapid evaluation
of alternative courses of action. Uses an approach similar to CFOR to implement a DST
for military commanders.
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COGNET (Cognitive Network of Tasks) – An integrated, cognitive/behavioral modeling
method and toolset designed to facilitate the process of applying cognitive models to
problems in human user performance/training.  Allows for the representation of real-time
transactions and multi-tasking demands on attention.  COGNET models can be paper-
and-pencil analytical models, or a fully executable model through the use of software
tools.

EPIC (Executive Process Interactive Control) – A modeling tool that allows for the
development and testing of theories of multiple task performance.  Designed primarily to
develop detailed accounts of human dual-task performance.  Has psychologically-
plausible perceptual and motor systems that embody much of what is known or
hypothesized about these systems.  EPIC does not learn.

FACET  (Future ATC Concept Evaluation Tool) – An ATM research tool to provide a
simulation environment for exploration, development and evaluation of advanced ATM
concepts.  Addresses airspace modeling.  Doesn’t simulate behavior of humans, but does
work well with Center TRACON Automation System (CTAS) and supports concept
exploration.

JPSD – Demonstrated the use of models that dynamically vary their level of resolution
during simulation, in order to manage resource demands and support occasional use of
high-fidelity models of selected behaviors and dynamics.

MIDAS (Man-machine Integration, Design & Analysis System) – Allows simulation of
humans interacting with crew station equipment, vehicle dynamics, and a dynamically
generated environment.

NARSIM (NLR ATC Research Simulator) – Simulates aircraft, radar, weather and
automated ATC for research and development (R&D) of advanced automated tools and
integration of ground and air-based systems.

NASM (National Air Space Modeler) –Nested FSMs to represent flight behavior of
individual combat aircraft, as well as their coordinated group behavior.

OMAR (Operator Model Architecture) – Support the development of simulation models
of human agents interacting with other human agents, both simulated and real, in
executing these complex tasks.

PUMA (Performance and Usability – Modeling technique in ATM) – Predict the impact
on workload of changes in working procedures or operational tools.

RAMS (Reorganized ATC Mathematical Simulator) – Simulates various ATC functions,
and the entire flight plan in various amounts of detail.  Is rule-based, and uses a conflict
resolution system.  An “ATC event” generator that reports its discrete events or triggers
thereby enabling the modeler to program a unique set of activities.  Also contains a
transparent interface to facilitate statistical studies.
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Sensible Agents – A modeling architecture that allows for the development of flexible,
responsive, adaptive agents that perceive, process, and respond based on an
understanding of both local and system goals.  Key concept is dynamic, adaptive
autonomy for agents.  Allows distributed agents to operate and communicate using an
industry standard communication infrastructure (CORBA).

SIMMOD Plus – Performs detailed aviation simulation modeling.  Has Network Builder
that provides the capability to model multiple airports each having multiple runways,
taxiways, gates, deicing areas, staging areas, departure queues and concourses, as well as
extremely detailed airspace routes, and sectors.  Utilizes the mathematical process of
queuing.  Good for modeling airport-specific events only.

Soar – A general architecture for building artificially intelligent systems and for
modeling human cognitive behavior.  Has been used to model many aspects of human
behavior such as learning, problem solving, planning, searching, natural language, and
Human-Computer Interaction tasks.  Soar learns, but does not contained psychologically
based theories of perceptual or motor behavior.

Swarm – For multi-agent simulation of complex systems.  Basic architecture is the
simulation of collections of concurrently interacting agents: with this architecture.  Can
implement a large variety of agent based models. Allows for the simulation of complex
adaptive systems, without being tied to any modeling assumptions.

TAAM Plus (Total Airspace & Airport Modeler)– Simulates traffic for decision support,
planning, design and analysis.  Great for use as a planning tool or to conduct analysis and
feasibility studies of ATM concepts at and around airports.  It utilizes the mathematical
process of queuing.
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MODEL/
TECHNOLOGY

EASE OF ADAPTATION
SPEED OF OPERATION

BREADTH OF BEHAVIOR REPRESENTED

SUITABILITY TO
AVAILABLE
COMPUTING

INFRASTRUCTURE

EASE OF EXTENSION TO
PROBABLE FUTURE NEEDS

ACT-R

Like all cognitive models, the
primary difficulty in adapting it is

getting domain knowledge into the
framework.   Has already been

applied to widely varying domains.

Depends on hardware
available and the complexity of
the domain's representation.

Is capable of representing a very broad continuum of
human behavior, especially because this architecture

learns new rules by analogy.

 Written in Lisp, and
runs on Windows and

Mac machines
 Same as “ease of adaptation”

Apex
(Refs.

11, 25, 26)

Due to data input, various scenarios
 can be developed and simulations

performed.

Known for its rapid
processing analysis & its

ability to reduce time/
expertise needed to model.
fast, consistent integration

of behavior templates.

Simulated Human-in-the-loop engineering
design and Intelligent tutoring and decision

support systems able to diagnose &
anticipate information requirements of human

operators. 

Practical for
widespread use. 

Currently, supports external
users/developers 

ASCF

Like all cognitive models, the
primary difficulty in adapting it is

getting domain knowledge into the
framework. The abstract goals,

domain objects, and domain
constraints for civilian air traffic

control would have to be developed.
Organization of collaborating teams
would need to be represented. The

framework to do these has been
demonstrated.

Depends on hardware
available and the complexity of
the domain's representation.
Generated realistic tactical
military plans in somewhat

faster than real time.

Cooperative multi-agent solution of interrelated
problems. Selection of plans to satisfy abstract goals.

Generation of ground routes. Estimation of fuel
consumption, time of travel etc. on ground routes.
Tasking of units based on resource and capability
constraints. Plug-in use of subordinate planning /

optimization algorithms.

Written in Java for
Windows PC. Easily

ported to Unix.
Same as "ease of adaptation"

CFOR

Like all cognitive models, the
primary difficulty in adapting it is

getting domain knowledge into the
framework. The goals, domain

objects, and domain constraints for
civilian air traffic control would have
to be developed. The framework to
do these has been demonstrated.

Depends on hardware
available and the complexity of
the domain's representation.
Generated realistic tactical
military plans in somewhat

faster than real time.

Development, evaluation, and selection of
coordinated and synchronized plans to satisfy goals.

Generation of ground routes. Estimation of fuel
consumption, time of travel etc. on ground routes.
Tasking of units based on resource and capability

constraints.

Written in C++ for Unix
and Windows.

Same as "ease of adaptation"

Table 3.1-1: Model Assessment
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MODEL/
TECHNOLOGY

EASE OF ADAPTATION
SPEED OF OPERATION

BREADTH OF BEHAVIOR REPRESENTED

SUITABILITY TO
AVAILABLE
COMPUTING

INFRASTRUCTURE

EASE OF EXTENSION TO
PROBABLE FUTURE NEEDS

COAA

Like all cognitive models, the
primary difficulty in adapting it is

getting domain knowledge into the
framework.

Depends on hardware
available and the complexity of

the domain-representation.
Critiqued division-level tactical

military plans in real time.

The COAA system provides critiques and feedbacks
of human-generated plans using a subset of CFOR
technology. Estimation of fuel consumption, time of
travel etc. on ground routes. Compare resource and

capability constraints to tasking of units.

Written in Java for
Windows PC. Easily

ported to Unix.
Same as "ease of adaptation"

COGNET
(Refs.
3,4)

Like all cognitive models, the
primary difficulty in adapting it is

getting domain knowledge into the
framework.  Has already been

applied to widely varying domains.

 Depends on hardware
available and the complexity of

the domain's representation

Is capable of representing a very broad continuum of
human behavior

 Runs on Unix and
Windows

Same as "ease of adaptation"

EPIC
(Ref. 5)

Like all cognitive models, the
primary difficulty in adapting it is

getting domain knowledge into the
framework.  Has already been

applied to widely varying domains.

Depends on hardware
available, the number of
concurrent multiple tasks

modeled,  and the complexity
of the domain's representation 

EPIC is a human-performance model that accounts
for parallel, multiple task performance.  There is no

learning.  These facts make it of limited use in
representing a broader continuum of human behavior
(e.g. decision making, situational assessment, etc.)

 Written in Lisp.  Runs
on Unix, Windows, and

Mac
Same as "ease of adaptation"

FACET
(Ref. 7)

Several types of data can be read
with FACET for input to change of

scenario
Rapid prototyping capability Models aircraft routing only

Hierarchically
compatible with CTAS

Designed with modular software
architecture to facilitate rapid

integration of research prototyping
implementation of new ATM

concepts.  Software writing in Java
and C.  It is platform-independent,

and can be run on a variety of
computers.

JPSD

JPSD is a very large project that has
been running for about eight years,
and has produced many software
packages for multiple purposes.

Some are applicable and
extendable, but some are not. None
were designed for modeling civilian

ATC. ITAR restrictions apply.

Real time

The parts of JPSD that deal with simulation of air
vehicles handle tactical level behavior of fighter,

bomber, reconnaissance, and supporting aircraft.
Both individual and collective behaviors. Simulation

components are no longer under active development.

The parts of JPSD that
deal with simulation
used the Modular

SAFOR (ModSAF) as
its basic simulation

engine, on Unix
machines. ITAR

restrictions are in place
on ModSAF.

Not easy

Table 3.1-1: Model Assessment
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MODEL/
TECHNOLOGY

EASE OF ADAPTATION
SPEED OF OPERATION

BREADTH OF BEHAVIOR REPRESENTED

SUITABILITY TO
AVAILABLE
COMPUTING

INFRASTRUCTURE

EASE OF EXTENSION TO
PROBABLE FUTURE NEEDS

MIDAS
(Ref. 12)

Modular w/ the user able to specify
which modules are active

Designed to run in a timely
manner. 

Allows simulation of humans interacting with crew
station equipment, vehicle dynamics, and a

dynamically generated environment.  Emphasis is on
operator performance under mission conditions.

Runs on SGI
computers.

Has been applied to various
scenarios.  Written with LISP, C and

C++.  GUI-based.

NASM
Dependent on technical maturity and

organizational availability of Joint
SIMulation System (JSIMS)

Runs in real time and fast-as-
possible mode.

Tactical level behavior of fighter, bomber,
reconnaissance, and supporting aircraft. Both

individual and collective behaviors. Not yet finished.

Performs on multiple
common platforms, in
both stand alone and

networked modes.

Same as “ease of adaptation”

OMAR
(Ref. 17)

OMAR can operate in a distributed
environment, wherein multiple

OMAR images, each running on a
separate computer, can

communicate and interact across a
computer network to solve complex,
dynamic, computational problems.

OMAR can operate in a
distributed environment,
wherein multiple OMAR

images, each running on a
separate computer, can

communicate and interact
across a computer network to

solve complex, dynamic,
computational problems.

Models the human operator.  Its development
focused first on the elaboration of a psychological
framework that was to be the basis for the human
performance models.  Particular attention to the
representation of the multi-tasking capabilities of

human operators and their role in supporting
teamwork activities of operators.

Object-oriented
implementation based

on Common Lisp.
Agent behaviors are

represented in
Simulation Core

(SCORE) language.

Supports research on creation of
adaptive interfaces that use
intelligent agents to monitor
information, alert users of

changes/problems, seek out &
integrate data from disparate

sources, and generate potential
solution alternatives. Also used to
create intelligent controller nodes

that can insert such non-linear
effects as human decision-making,
precision weapons, and the effects

of non-conventional warfare into war
games and simulations.

PUMA
(Ref. 18)

Each data file is in a human-
readable, English language ASCII

form and can be edited either within
the tool that created it or in the text

form within any standard word
processor.

Depends on hardware
available and the complexity of

the domain's representation

Mainly workload assessment - interference and
amount of workload (increasing or decreasing)

Family of independent
tools with a common

'look and feel' and the
ability to exchange

data readily.

Mainly to be used for comparative
purposes and can be modified for

any scenarios, now or future.

RAMS
(Ref. 19)

 Appropriate for the study of new
system concepts.  Allows for

creation of new rules.

 Depends on hardware
available and the complexity of

the domain's representation
 Simulation of gate-to-gate 4D flight trajectory

 Written in MODSIM II
and runs on Unix

plaforms
 Same as “ease of adaptation”

Table 3.1-1: Model Assessment
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MODEL/
TECHNOLOGY

EASE OF ADAPTATION
SPEED OF OPERATION

BREADTH OF BEHAVIOR REPRESENTED

SUITABILITY TO
AVAILABLE
COMPUTING

INFRASTRUCTURE

EASE OF EXTENSION TO
PROBABLE FUTURE NEEDS

Sensible
Agents

(Ref. 21)

Dynamic adaptation of the autonomy
level of a Sensible Agent is
performed by the Autonomy

Reasoner to both promote efficient
problem solving and to resolve

conflicts.

 Depends on hardware
available and the complexity of

the domain's representation

Spectrum of autonomy:  Command-driven (agent
responds to external command), Consensus (agents
work as a team to devise actions), Local (agents in

charge of planning its own actions), and Master
(agent plans for self and others - issues commands).

Supports distributed
heterogeneous

computing
environments and

third-party
connections.

Supports a multi-platform and multi-
language research environment
including C++, Java, Lisp and

ModSIM.

SIMMOD
(Ref. 22)

Adaptable to most situations at
airport(s) depending on input.

Dependent on number of
aircraft in simulation.

Behavior of aircraft in airspace and/or on ground.

 Works with Windows
9x/NT/2000 and

provides an open
architecture that

operates easily with
other desktop

applications (Excel,
Access, Freelance,

etc.)

Available as an EXE w/
customizable input & output files.

Soar
(Ref. 23)

Like all cognitive models, the
primary difficult in adapting it is

getting domain knowledge into the
framework.

Depends on whether or not
learning is activated. Depends
on level of detail in cognition

model.

Soar is a framework. It can model as much or as little
of the domain as desired and affordable.

Versions available for
most computing

platforms, in C, C++,
Lisp.

Same as "ease of adaptation"

SWARM
(Ref. 10)

Swarm is a modeling toolkit, not a
model. The primary difficult in
adapting it is getting domain

knowledge into the framework.

Depends on complexity and
scale of the model.

Swarm is a modeling toolkit. It can model as much or
as little of the domain as desired and affordable.
Standard capabilities in swarm are the ability to

schedule events for execution, to write code which
defines agents’ behaviors, and so on.

Various version
available for

widespread use
Same as "Ease of adaptation"

TAAM
(Ref. 24)

Rulebases of most aspects are
reconfigurable and can be edited

even during simulation runs.  Linking
w/ other programs is possible via
input and output files.  Additional

packages allow linking w/ other ATM
programs such as FAA's Integrated

Noise Model.

Strongly dependent on scale
(flights/day) and computation

time varies approx. w/ the
square of the number of aircraft
(real & ghost) in the simulator

Behavior of aircraft in airspace and on ground
 Runs on Solaris or

Intel platforms
Available as an EXE w/

customizable input & output files.

Table 3.1-1: Model Assessment
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3.2 Assessment and Recommendations

The prior work on HBR in these models breaks down into a few broad categories. The
first two categories account for most of the models.

Queuing models and their derivatives: These account for the transition of airplanes from
phase to phase along their planned routes, with appropriate processing and capacity
delays along the ground taxiways, at gates, and so on. Because civilian aircraft in the
NAS tend to fly repetitive routes between cities that do not move, without active attack
by intelligent adversaries, it is quite effective to have humans specify all the basic
patterns of movement, and leave the “book keeping” of particular movements to the
computer. Even in the future, a great quantity of the simulation’s processing will be
precisely this kind of repetitive, fairly predictable behavior.

Workload models and their derivatives: The estimate the ‘workload’ on human operators
when presented with various levels of stimuli over time, and with different required rates
of decision-making. However, they do not model the detailed individual and/or group
thought processes of forming a situation assessment selecting, mentally generating
multiple alternative courses of action selecting, thinking through the possible outcomes of
those courses of action selecting, and selecting a course of action.

Soar is unique in that it is an old, well-established Artificial Intelligent program, applied
to many diverse domains, and based on a particular model of human cognition.
Unfortunately, it has very high computational demands, so that a fairly powerful machine
was needed per individual helicopter when it was used in the STOW project with
MITRE. Soar represents the thought process of an individual, and the functioning of a
team is emulated by establishing linkage between multiple running instances of Soar (it
must be done in the problem-reduction methodology of Soar).

Military planning models: These are focused on the individual and/or group decision-
making process. Because military operations are planned over an enormous and dynamic
range of environments, the target sets are never the same and often moving during
operations, and there is always active intelligent attack, they has always been a need not
only for the basic “follow a specified path” behavior, but also for models focused on the
cognitive factors of situation assessment, option generation, outcome assessment, and
order dissemination.

The queuing and workload models are the dominant category, and they will continue to
be indispensable. However, the higher-level cognitive behaviors will need to be added to
fully meet the future demands of the future NAS modeling system.  The basic
technologies can be taken from the military planning models, which have always been
oriented toward complicated team behaviors. However, the particular military domain
content will need to be replaced with NAS-specific domain content.
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4 Roadmap for Integrating Human Behavior Models
into an ATM Modeling Environment

4.1 Features/Issues

The goal for integrating human behavior models into an ATM modeling environment is
to achieve a flexible, reconfigurable and adaptable to new operational concepts NAS
M&S system that is capable of being run large scale, over various levels of resolution,
and in a distributed fashion.  It is our assessment that no single model or modeling
technique will be sufficient to represent the full range of NAS actors and events.  Rather,
a toolkit should be assembled that will fulfill the requirements of the M&S system.  This
toolkit should be capable of simulating the full range of gate-to-gate activities involved in
complex operational concepts.

The approach should minimize development cost and risk by leveraging significant
investments already made by the Government in individual NAS models.  The goal is a
fully open, interoperable architecture that incorporates specific components of legacy
models, or in specific cases, the entire legacy model.

The toolkit should contain proven state-of-the-art agent technology, detailed NAS
domain models, a variety of analysis methods, validated mathematical queuing and
physics-based trajectory models, and validated human performance multi-tasking models.
Even within each of the above-mentioned categories, a variety of approaches should be
available, as “agent technology” can be implemented in a number of ways, each having
its own set of pros and cons.  As an example, “agent technology” may utilize one or more
of the approaches listed in Appendix E, and one approach may be more effective than
another in a given subset of the ATM domain.

4.2 Timeline

Achieving all of the above requires a layered, time-phased approach.

In the first layer, a more intensive study of the models and modeling architectures
identified in this study is required, with the purpose of identifying the specific elements
that need to be included in the ATM modeling toolbox.

The second layer should tackle interoperability issues, including standards such as the
HLA.  In some cases, code may be essentially copied into a new environment, whereas in
other cases, specific communication protocols may need to be adopted and utilized.

The third layer should address the interface for an M&S analyst to access the toolkit.  Of
specific interest here is how the analyst specifies the question of interest, the domain and
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scenario, and perhaps even the operational concept.  The analyst should be able to
understand how to create the front end of an analysis, how, and which specific, elements
of the toolbox will be used, and how to specify back-end data collection.

Throughout this process, projects relevant to M&S will provide new state-of-the-art
capabilities.  These projects are again noted as tech feeder programs.  Examples of some
of these tech feeder programs are listed below:

§ Simulation “front end” for experimental/simulation design
§ Construction of agent and activity “base pieces” for use in lower and higher

fidelity environments
§ Translation between levels of resolution
§ “Back end” analysis/synthesis of data.

The above programs allow for a sophisticated state-of-the-art environment within which
one can accomplish a “cradle-to-grave” exploration of a set of operational concepts or
questions.

The following table, Table 4.2-1 is a depiction of one possible timeline for tasks
mentioned above, being fed by tech feeder programs during the developmental cycle. The
main path of new HBR development focuses first on the development, second on
refinement of two kinds of high level group behavior: controllers, then lastly, operational
control. Keep in mind that this functional prioritization should be tailored to the needs of
the particular operational concepts and technologies being developed by NASA.

This would leverage on-going research on entity-level simulations and behaviors that will
be performed by other projects. Similarly, the scenario setup and data analysis tools can
be expected to come on line over time, and their requirements could be partially driven
by the increasing capability of the HBR. The logic guiding the dependencies depicted
below is that the setup tools would be independently developed, while basic HBR and
queuing-style simulation was developed, then the automated setup tools adapted and
integrated with them. Similarly, with the analysis tools.

The suggested approach is to start with a core functionality of sector controllers, then
expand functionality of the sector controllers to include negotiated hand-offs between
sectors. The development and integration with the ground/terminal operations controllers
would complete the basic structure. The internal logic of the controllers must be
developed to cover not only the current top-down command system, but also the
“management by exception,” which is expected under future concepts based on free-
flight and direct plane-to-plane coordination. We expect the roles of controllers to
change, rather than be eliminated. This implies that the hierarchy of controllers will have
to be built, as will the HLA-based communication paths between aircraft and controllers,
and so on. These implied tasks are omitted here in the interest of space and clarity.

When the controller HBR has been developed to the point of covering the entire NAS in
an integrated fashion, the airline operations centers (AOC) could be started. The logic
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here is that each AOC will cover its own corporate subset of planes, under the overall
direction of the controllers. More precisely, each AOC would be using each airline’s own
objectives and options to control their operations, subject to the controllers’ constraints.
We anticipate that this could be modeled somewhat like a Stackleberg game from
economics, where the controllers are the “leaders” and the AOCs are the “followers.”

We expect the controllers to continue evolving and improving even after the AOC’s have
started. Once the controllers can handle sectors, the AOC’s can be trained. Ultimately, it
is still logical to improve the controllers’ ability to perform resectorization.

.
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Figure 4.2-1: Phased Approach to NAS Model Development
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Appendix A - List of Acronyms

2D 2-dimensional
4D 4 dimensional
AATT Advanced Air Transportation Technology (Project)
ACT-R Adaptive Control of Thought - Rational
AOC Airline Operations Center
ASC Aviation System Capacity (Program)
ASCF Advanced Synthetic Command Forces
ATC Air Traffic Control
ATM Air Traffic Management
AvSTAR Aviation System Technology Advanced Research
B&SA Benefit and Safety Assessment
C3 Command, Control and Communication
CCSIL Command and Control Simulation Interface Language
CDTI Cockpit Display of Traffic Information
CFIT Controlled Flight Into Terrain
CFOR Command Forces
COAA Course of Action Analysis
COGNET Cognition as a Network of Tasks
CRC Classes, Responsibility, Collaboration (Methodology)
CSP Constraint Satisfaction Problem
DAG Distributed Air-Ground
DARPA Defense Advanced Research Projects Agency
DOD Department of Defense
DOT Department of Transportation
DST Decision Support Tool
EC Evolutionary Computation
EPIC Executive Process / Interactive Control
FAA Federal Aviation Administration
FACET Future ATC Concept Evaluation Tool
FSM Finite State Machine
GPS Global Positioning System
GUI Graphic User Interface
HBR Human Behavior Representation
HLA High Level Architecture
ILP Integer Linear Programming
JPSD Joint Precision Strike Demonstration
KE Knowledge Engineer
LP Linear Programming
M&S Modeling and Simulation
MIDAS Man-Machine Integration, Design, and Analysis System
MIT Massachusetts Institute of Technology
MRM Multi-Resolution Model
NARSIM NLR ATC Research Simulator
NAS National Airspace System
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NASA National Aeronautics and Space Administration
NASM National Air and Space Warfare Model
NLR National Laboratory of Research (Netherlands)
NMCT Noise Mitigation Controller Tool
NP Nonlinear Programming
OMAR Operator Model Architecture
PUMA Performance and Usability – Modeling technique in ATM
QAT Quiet Aircraft Technology (Program)
R&D Research & Development
RAMS Reorganized Air Traffic Control Mathematical Simulator
RTI Real Time Infrastructure
RTO Research Task Order
SAIC Science Applications International Corporation
SATS Small Aircraft Transportation System
SCC System Command Center
STOW Synthetic Theater of War
SUA Special Use Airspace
TAAM Total Airspace & Airport Modeler
TO Task Order
TRACON Terminal RADAR Approach Control
UCFIT Uncontrolled Flight Into Terrain
U.S. United States
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Appendix C – Example of the Human Behavior Matrix in High Fidelity Format

The three following tables illustrate the human behavior matrix presented in Section 2, and illustrates one way it might be filled out
for arrival, departure, and en route situation, in a fairly high fidelity format.

Arrival Situations Current Situation Perception Future Situation Projection Option Generation Outcome Evaluation

Standard Reactions (Emergencies trained for)

Aircraft/vehicle/animal/object on runway
Pilot sees object on runway, thinks "should
I abort?"

Pilot feels aircraft will still be on
runway when he should be landing Go around or no? Best solution or no?

Engine failure Go around or no? Best solution or no?

Gear doesn't come down and/or lock Go around or no? Best solution or no?

Approach cut off by another aircraft

Routine Performance

Landing procedures Go around or no? Best solution or no?

Communications Go around or no? Best solution or no?

Taxiing Go around or no? Best solution or no?

Staff Work

Paperwork Go around or no? Best solution or no?

Flight tracking Go around or no? Best solution or no?

Judgment Calls/Problem Solving
(Emergencies NOT trained for)

Bird strike Go around or no? Best solution or no?

Cockpit panel troubleshooting Go around or no? Best solution or no?

Electronics failure (Any instruments like
navigation, radios, etc.) Go around or no? Best solution or no?

Communications failure Go around or no? Best solution or no?

Physical/health-related Go around or no? Best solution or no?

Fire

Weather

Table C-1: Human Behavior Matrix Example – Higher Fidelity
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Departure Situations Current Situation Perception Future Situation Projection Option Generation Outcome Evaluation

Standard Reactions
(Emergencies trained for)

Aircraft landing on same runway as
you’re cleared for take off

Pilot sees aircraft approaching on
runway after being cleared, thinks
“should I still go?”

Pilot feels aircraft will be on runway
when he should be taking off Go around or no? Best solution or no?

Engine failure Go around or no? Best solution or no?

Aircraft ahead of you still on runway as
you’re cleared for take off

Object on runway (vehicle, animal,
aircraft part, etc.)

Routine Performance
Taxiing Go around or no? Best solution or no?

Take off procedures Go around or no? Best solution or no?

Communications Go around or no? Best solution or no?

Staff Work
Paperwork Go around or no? Best solution or no?

Flight tracking Go around or no? Best solution or no?

Judgment Calls/Problem Solving
(Emergencies NOT trained for)

Bird strike Go around or no? Best solution or no?

Problem troubleshooting Go around or no? Best solution or no?

Electronics failure Go around or no? Best solution or no?

Communications failure Go around or no? Best solution or no?

Physical/health-related

Fire

Weather

Table C-1: Human Behavior Matrix Example – Higher Fidelity (Cont’d)
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En Route Situations Current Situation Perception Future Situation Projection Option Generation Outcome Evaluation

Standard Reactions (Emergencies
trained for)

Routine Performance
Communications

Staff Work
Paperwork

Flight tracking/navigation

Judgment Calls/Problem Solving
(Emergencies NOT trained for)

Bird strike

Cockpit panel problem troubleshooting

Electronics failure

Communications failure

Physical/health-related

Engine failure

Fire

Weather

Table C-1: Human Behavior Matrix Example – Higher Fidelity (Cont’d)
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Appendix D – Issues in Assessing Human Behavior Models

This document outlines some of the questions and elements to bear in mind when
examining human behavior models or technologies or problems, in ATM for NASA’s TO
69 under AATT.  Although it was beyond the scope of this study to answer in detail all of
the questions/issues listed below, it is important to illustrate some of the reasons that the
topic of human behavior modeling can be so rich and complex.

Standard Questions in Human Behavior Modeling

This is a list of some of the standard questions that should be addressed in order to gain a
thorough understanding of how human behavior is being modeled in a system. This
applies to analytical as well as simulation models. Of course, analytical models are
limited to simpler situations, as they must be tractable. These issues are important in air
traffic control, military airspace management, battle management, economic simulation,
and so on. This list is based on SAIC experience in coding models, managing system
integration between multiple vendors’ products, leadership of national conferences and
developers’ workshops on HBR, etc.

q The true utility measures of C3 elements in the system. (e.g. rampers take care of their
airline's planes first, so their utility measure is to minimize weighted delay)

q What are the C3 nodes in the system for each different plausible behavioral scenario
to be considered (e.g. pilot, ground controller, en route controller, etc)?

q Range of behaviors required to carry out different plausible C3 scenarios (and the
minimal generalization of those behaviors is what needs to be built into our behavior
modeling toolkit)

q What are the meso, macro, and micro levels of behavior? Which are modeled? For
those not explicitly modeled, how are the boundary conditions, unmodeled dynamics
addressed?

q Time span of perceptions and behaviors (build air ports over years, buy slots over
months, assign gates over days, assign taxiways over minutes, adjust ailerons over
milliseconds) that need to be modeled

q How do long-term behaviors constrain, limit, or bias shorter term behaviors? When
can the long-term behaviors be considered as static "scenario specification" for
shorter term?

q Analytic mathematical model versus simulation model. Is the entire model analytical?
All simulation models must "bottom out" in analytic approximations (else they would
continue down in nearly endless detail until they reached quantum mechanics). Where
is that line drawn? How is the uncertainty in the analytical approximation handled
(e.g. by random noise on the result)? Could the line be moved up in some modules, in
order to simplify the simulation, without obscuring any important interactions? Does
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it need to be moved down in some modules? (e.g. many combat simulations would
benefit by having their movement and attrition modules greatly simplified, and their
commander modules improved).

q Modeling the result of behavior vs. modeling the process of behavior (result: straight
and level flight, process: feedback controller attached to dynamic plant model).

q Ground-truth of simulation versus actor's perceptions. How is ground truth
communicated between software modules, and how are perceptions derived from
ground truth?

q Time stepped vs. tick based vs discrete event simulation

q Are individual behaviors analytically modeled, or rule-based (and all variants
thereof), or optimization (and variants thereof, such as genetic algorithms, neural
nets, etc.)?

q How are streams of exogenous input streams handled? Examples are weather,
passenger demand, etc. what events should be exogenous, and which endogenous?

q Is the system modular enough so that different pieces can be unit-tested? For
example, can we run the purely physical simulation before even writing the C3 parts?
Can we test the C3 parts separate from the physical simulation? Communication
separate from decision-making? Formation of situation awareness separate from the
sharing of situation awareness?

q Is the system modular enough that different components can have their level of
resolution changed? for example, with a given module in en route flight, can we
switch (w/o recompiling any code) between point-airports and detailed airports? With
a given set of detailed airport models, can we switch back and forth between detailed
simulation of en-route flight and simple stochastic delays? Can the level of resolution
be dynamically varied while the simulation is actually running?

q Stochastic versus deterministic.

q Are just the physical behaviors stochastic (movement, success in establishing a
communication channel), or are also decision-making and communication processes
stochastic? For example, if a decision is clearly for X when A << B, and for Y when
A >> B, does the system make a random 50/50 decision when A == B, or is there a
discrete threshold effect? Does the actual content of communication sometimes get
randomly garbled?.

q Is the level of randomness continuously scalable from zero to normal?

q Is the randomness repeatable or unrepeatable?

q How do decision makers handle subordinate or peer entities when they perform
normal behavior, undesired but normal behavior (e.g. assess the local situation,
decide to discuss orders before acting because they were inappropriate to the
situation) , abnormal but physically possible behavior (complete failure to obey
orders, acknowledge communication attempts, etc), or physically impossible behavior
(vehicles appearing in the middle of the simulation)?

q Is the terrain (e.g. airport structure) easily modified through input files? How about
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C3 logic of individual actors? How about C3 structure and the set of actors?

q Is the connectivity node-and-link or full 3D? Is it a mixture (e.g. 3D flight, node-and-
link taxiways)

q Format of terrain input files

q Format of plan input files

q Coordinate conversion

q Range of behaviors required in a single run:

q Numerical variation (e.g. change movement rate and shooting rate in a piston-style
combat model)

q Selection from pre-defined list

q On-the-fly composition from a pre-defined tool kit

q On-the-fly problem solving / planning

q Recording and playback:

q Can the model save state periodically to enable restart with varied parameters? Can
the model be paused in the middle of a run, inspected in various ways, and resumed?

q Can the motions of entities be viewed during a run? Saved and viewed after a run?

q Can the reasons for behavior be recorded and presented in human readable form?

q Tactical / operational / strategic levels of C3

o Where are the decision makers physically located?

o What decisions do they make? (e.g. set target flow rates from airports, vs. tell
individual aircraft to when to takeoff)

o How do the higher-level decisions constrain / guide lower level decision
makers?

q How do lower level decision makers report deviations (accidental or on purpose)
from the suggested/commanded?

q What tools are available to assist in setup of test runs or production runs? (e.g.
stochastic terrain generators, synthetic airport generators, traffic demand matrix
generators, etc.)

q What tools are available to monitor the model while running (e.g. dynamic 3D image
generation, strip charts, etc.) and to analyze the results?
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Objects and Behaviors unique to ATM:

The Classes, Responsibilities, and Collaboration (CRC) Methodology focuses on the
classes, responsibilities, and collaboration of objects in the domain to be simulated. The
following is a rough start at some the objects relevant to ATM that are not already
implied by the previous section.

q Vehicle types (speed, size, owner, fuel state, range, wake vortex force and
persistence, frequency of different types of equipment problems, distribution of repair
times, runway length and strength limits, etc)

q Runways (length orientation, width, strength, surface condition, lighting)

q Taxiways (similar)

q Gates (location, compatible aircraft, owner, scheduled usage)

q Navaids

q Sensing (what terrain / actors / navaids / weather characteristics can be sensed,
content, timing, failure probability and modes)

q En route airspace

q En route "highways in the sky"

q Terminal airspace

q Final, takeoff

q Weather (exogenous generation with reasonable statistics, generation with stressful
statistics, avoidance, accuracy and type of sensing)

q Communication (channels, sharing, generation, content, interpretation, timing, failure
probability and modes)

q Controller/etc heuristics (e.g. minimum 4D separations)

q Controller/etc regions (volumes) of responsibility

q Stereotypical behaviors (e.g. path objects for dogleg, trombone, hold on ramp, etc.)

q Random errors (actual vs. desired motion, location sensing of self and others,
decisions, equipment failure, weather, status reporting, communication contents)

q How do disasters happen? For example, Controlled Flight Into Terrain (CFIT),
collision, Uncontrolled Flight Into Terrain (UCFIT)? How can we model the factors
that make them more or less likely (e.g. controller workload, mean closest-approach
distance, mean number of approaches below tolerance per flight)
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Appendix E – Discussion of Other General Techniques & Methods

The purpose of this section is to introduce some of the key concepts and technologies
used in “state of the art” human behavioral modeling.  Some of these concepts and
technologies are “newer” than others, but there is a wide body of research resulting from
simulation scientists using older approaches in new ways, as well as developing new
methods for the modeling of human behavior, and merging various methods together into
hybrid approaches.  Hybrid approaches are thought to be very useful and powerful, as
they have the potential of merging the component methods pros while offsetting each
other’s cons.

It is beyond the scope of this study to do a full treatment, and compare and contrast
analysis with examples, however, we can briefly illustrate some of the pros, cons, and
most appropriate uses of some of the methods listed below.  The below Table E-1 is not
intended to be a complete and exhaustive list of any method appropriate to the modeling
of human behavior.  Also, we realize, that another simulation scientist may choose to
categorize our list in a different manner, as there are some overlaps amongst the various
methods listed below.

Our intent in providing this appendix is that a Program Manager, with a basic
understanding of a list such as the one provided below, would be adequately prepared to
examine and assess simulations, which claim to represent human behavior.  It may allow
a program manager to more effectively be able to “look under the hood” of such
simulations, and examine if the technology being used is suited for the problem or
domain it is intended to simulate.  It is also important to note that the below techniques
may only be applicable to some aspect of human behavior modeling, e.g. for selecting a
course of action, or for planning activities, or for addressing the topics of memory and
learning, etc.

Table E-1: Technique & Method Comparison
NAME PROS CONS DESCRIPTION

RULE-BASED
EXPERT SYSTEM

Good for domains
that are relatively
simple and well
understood and
where expertise can
be elicited in the
form of if-then rules

Is static; doesn’t know
how to handle situations
not explicitly accounted
for in the rules; for
complicated domains,
need a very large
amount of rules—whose
global effect may or
may not be well
understood; can be
issues in the precedence
or sequencing of rules;
knowledge engineering
in order to construct the
rules can be difficult

Consists of a collection
of “if-then” rules
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FINITE STATE
MACHINES

Good for domains which
are adequately described
as a set of states, and a
deterministic transition
between states. Fast.
Easy for domain experts
to understand.

Is static; doesn’t know
how to handle situations
not explicitly
represented in the set of
possible states; has no
concept of memory; has
no concept of learning

A technique that models
a system as a set of
states, and a
deterministic transition
between states

CONSTRAINT
SATISFACTION
METHODS

Good for when a choice
of discrete variables,
subject to well-defined
constraints, needs to be
made. Easy for domain
experts to understand.
Easy to model
cooperation of teams.

Naïve implementation
needs a very efficient
algorithm (e.g.
intelligent backtracking,
or one that takes specific
structural features of the
problem into account)
since constraint
satisfaction problems
are usually
combinatorially large
(NP-complete).
Therefore, effective
implementation requires
isolating a few “large”
key variables(e.g. an
entire “route”), rather
than numerous “little”
variables(e.g. latitude of
the 5th waypoint).

A technique that solves
a problem which
consists of a set of
variables, and constraint
relationships between
the variables. Modeling
cooperation of teams or
organizational units.

Q-LEARNING

Does not need a model
of the environment.
This method guarantees
convergence to the
“correct answer” if the
environment is
stationary, the reward is
truly a function of
actions applied to
various states, all state-
action pairs are sampled
appropriately, and the
learning rate is
decreased appropriately
over time

Must be able to define
all states and actions,
and be able to measure
the reward from
transitioning from one
state-action pair to the
resulting state.  No
concept of memory.

A type of reinforcement
learning; must be able to
represent the domain as
a collection of states,
actions, and payoffs.
The goal is for the
system to learn the
optimal action (rewards
in the highest payoff)

ARTIFICIAL
NEURAL
NETWORKS

Have been used to
represent very
complicated and
nonlinear functions,
good at pattern
recognition problems.
Is a form of distributed,
adaptive, nonlinear
computing good for
“tough” problems
defying human
reasoning.

No concept of memory.
Must be able to
represent the domain as
a collection of inputs
and outputs.  Relies on
the concept of training
an initially random
network to correctly
map inputs to outputs.
Can take a lot of
computational
power/time to train an
ANN.  Insufficient data

A type of reinforcement
learning.  Is a
computational construct
designed to mimic the
way the human brain
processes information.
Often used in pattern-
recognition problems,
e.g. the ANN is used to
associate a particular set
of inputs to a particular
output
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ARTIFICIAL
NEURAL
NETWORKS
(CONT’D)

may be a problem.  May
not be able to generalize
to “new” cases,
depending on the quality
of the training data.
Sometimes viewed as a
“black box” approach,
the structure of the
network usually doesn’t
imply any specific
information about the
nature of the problem.

EVOLUTIONARY
COMPUTATION

Good for complex,
highly-dimensional
problems with unknown
structure.  “Good”
answers are found
relatively quickly if the
search space is not too
huge

Must be able to
accurately measure the
“goodness” of any
candidate solution to a
problem.  Can take a lot
of computational
power/time to find a
“good” answer,
depending on the
complexity (search
space) of the problem.

A technique used to
seek an “answer”
(nearly optimal or
optimal solution) to a
problem which consists
of a finding values for
set of variables.
Specific types of EC
include genetic
algorithms and
evolutionary
programming

FUZZY
LOGIC/FUZZY
INFERENCE

Good for situations that
are not “black and
white”.  The concept of
fuzziness allows for
smoother transition
between categories than
for instance, “yes” and
“no”

Because of the
fuzziness, it can be
harder to attribute an
outcome to inputs that
generated it.  Some
aspects of the world are
“crisp” and not
“fuzzy”—a
determination is needed.
No formal procedure to
select actions based on
outcome of fuzzy
inferencing.

Similar to rule-based
expert system, except
that the subject of the
“if” and the object of the
“then” are treated as
fuzzy variables

BAYSEIAN
NETWORKS

Deals well with lack, or
ambiguity of,
information; good way
to combine historical
(empirical) data with
expert knowledge

Expert knowledge, in
the form of prior
probabilities, can be
viewed as some as
biasing the results too
much. Requires a static
network of relationships.

A network of variables
or “events” that map out
cause and effect
relationships through the
use of conditional
probabilities

AGENT-BASED
(COMPLEXITY-
BASED) MODELING

Good for examining
(unexpected) emergent
results of a complex
adaptive system

Depending on the
complexity of the
simulation, it may be
difficult to attribute
cause to effect

A “bottom up”
simulation of a domain,
with agents interacting
with each others and
their environment based
on simple rules and
locally available
information.  Emergent
behavior is the result.
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COGNITIVE
ARCHITECTURES
(e.g. BDI)

Models knowledge
representation and agent
reasoning in
psychologically
plausible ways

May not be the most
appropriate or efficient
way to simulate desired
behavior, depending on
the specific task or
domain being modeled

A simulation
architecture that
explicitly utilizes a
theory of cognition.
BDI is a cognitive
architecture that can be
used to create agents
which act on beliefs,
desires, and intentions

CONCEPT
LEARNING

Good for learning
through experience, if
the learner is presented
with enough positive
and negative examples

May be difficult to
collect enough positive
or negative examples for
this technique to be
effective

Technique used to learn,
through positive and
negative examples, a
particular concept,
including all of the
positive examples, and
none of the negative
examples

CASE-BASED
REASONING

Is an example of
learning through
experience, building
theories, and updating
them based on specific
cases experienced.
There is high
psychological
plausibility to this
approach.

May be difficult to
construct a broad, well-
indexed set of cases for
the agent. Success
depends on extracting
relevant knowledge
from the experience.

A problem solving
paradigm which
attempts to solve a
“new” problem, by
finding the most similar
previous problem solved
(case), and reusing the
knowledge contained
there in the new
situation.

MATHEMATICAL
PROGRAMMING
(LINEAR, INTEGER
NONLINEAR,
DYNAMIC
PROGRAMMING…)

Finding the optimal
solution of a linear
program is relatively
easy, and is guaranteed.

Must be able to express
the problem as minimize
(or maximize) an
objective function,
subject to well-defined
constraints on the
variables.  Represents a
“neat” and
mathematically
appealing way to
approach a problem but
integer and nonlinear
programs can be
difficult to solve, and
may not be particularly
well suited for the
problem at hand. ILP is
NP-complete, and can
only handle numerous
“small” (i.e. integer)
variables.

The operations research
method used to
determine the minimum
or maximum of an
objective function,
subject to constraints on
variables
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MARKOV DECISION
PROCESS

Appropriate for multi-
stage, sequential,
decision processes

Exhibits the “memory-
less” property, e.g. a
transition from one state
to the next (given a
selected action) is only
dependent on the state
one is currently in.
“Curse of
dimensionality” limits it
to fairly small problems.

A type of stochastic
dynamic
programming—is a
representation of a
reinforcement learning
task similar to Q-
learning, except that
state transition is
probabilistic rather than
deterministic

GAME THEORY

Effectively represents
strategizing and counter-
strategizing, in both
complete and partial
information
environments

Naïve versions assume
all agents have complete
information about each
other’s choices, and
mutual payoffs for all
choices. Sophisticated
implementation that
represent partial
information, or strictly
competitive but not
strictly zero-sum, games
can be slow to solve.
Non-strictly competitive
games have no known
general solution
procedure.

A mathematical theory
of rational behavior for
interactive decision
problems

Adjustable Rulesets

Dynamic and adaptive,
in that rules can be
modified, or new ones
created, to adjust to
changing circumstances.

The behavior of the rule
set can be dependent on
choosing the right
values for the steering
parameters, e.g. it
becomes an
optimization problem
which may be difficult
to solve

Similar to rule-based
expert system, but the
rules are steering
parameter-driven, which
allows for the
modification of rules, or
creation of new ones

Probabilistic/Monte
Carlo Simulation

Useful when behavior
depends on one or more
probability distributions.
Uses standard statistics
to understand the
results, e.g. plotted
histogram of measures
of effectiveness

Sufficiently sampling
the space can require
intensive computer
power

The technique of
simulating an event(s)
by taking as input
randomly chosen values
from given probability
distributions




